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Real-time deformable object simulation is important in interactive applica-
tions such as games and virtual reality. One common approach to achieve
speed is to employ model reduction, a technique whereby the equations of
motion of a deformable object are projected to a suitable low-dimensional
space. Improving the real-time performance of model-reduced systems has
been the subject of much research. While modern GPUs play an impor-
tant role in real-time simulation and parallel computing, existing model
reduction systems typically utilize CPUs and seldom employ GPUs. We give
a method to efficiently employ GPUs for vertex position computation in
model-reduced simulations. Our CUDA-based algorithm gives a substantial
speedup compared to a CPU implementation, thanks to our system architec-
ture that employs a memory layout friendly to GPU memory, reduces the
communication between the CPU and GPU, and enables the CPU and GPU
to work in parallel.
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1 INTRODUCTION
Model reduction is commonly used to accelerate physically based
simulations in computer graphics and animation. It can be applied
to 3D solids, cloth, plants, soft body characters, fluids and other
systems. We propose a novel CUDA architecture for improving
the runtime performance of simulation systems that use model
reduction. We demonstrate our technique on multibody dynam-
ics simulations whereby objects undergo large rotations and large
model-reduced deformations, such as complex plant systems. The
runtime computation of a typical model reduction timestep consists
of two parts: (1) calculation of the current reduced coordinates q
by timestepping a system of ODEs or some other simulation model,
followed by (2) calculation of the mesh vertex displacements away
from the neutral pose, u (t ) = Uq, where u = u (t ) ∈ R3n are the
displacements of the n mesh vertices,U ∈ R3n×r is the modal ma-
trix and q = q(t ) are the reduced coordinates. In model reduction
systems, step (1) typically entails timestepping a low-dimensional
dynamical system and is commonly performed very rapidly and
independently of the mesh complexity, e.g., in times on the order of
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Fig. 1. Simulation of this plant forest runs at 50 FPS, thanks to our CUDA
modal displacement deformer. Each branch and leaf is a separate model-
reduced object. Calculating the reduced coordinates q (i ) for all the objects
(6,440) takes 20 msec per timestep. Observe that we can compute vertex
positions and transformations on the GPU in parallel with timesteppingq (i ) ;
hence we can achieve the 50 FPS frame rate = 1 / (20 msec). For comparison,
the CPU system runs at 12 FPS.

(or under) 1 millisec. Step (2) depends on the mesh complexity and
is often the computational bottleneck of model reduction systems
at runtime. In our work, we give a CUDA approach to greatly speed
up step (2). Model reduction systems typically perform step (2) on
the CPU (Figure 2a). Our system, however, performs step (2) using
an efficient CUDA algorithm on the GPU. Our experiments demon-
strate that step (2) is often the bottleneck of the entire runtime
computation and therefore our method gives substantial overall
system speedups compared to a CPU implementation. We achieve
the speedups by grouping CUDA multiplications to avoid bank con-
flicts, maximizing CUDA thread utilization, re-shaping and pooling
modal matrices of multiple objects, and optimizing the memory data
layout for maximum performance. To the best of our knowledge,
no prior work has explored how to rapidly deform many model-
reduced meshes using the GPU. Our method enables the CPU and
GPU to work simultaneously and asynchronously, and reduces the
amount of communication between the CPU and GPU. Together,
these improvements greatly decrease the overall time cost of each
model reduction simulation timestep. An overview of our system is
shown in Figure 2b.

2 RELATED WORK
In computer graphics, early applications of model reduction to de-
formable object simulation were for linear systems [Hauser et al.
2003; James and Pai 2002; Pentland and Williams 1989]. The modal
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Fig. 2. The workflows of two timesteps in a CPU-based “classical system” that does not use CUDA computation (a), and in our CUDA-enabled system (b).

matrixU in these methods is computed using linear modal analy-
sis; the resulting simulations are fast but only useful under small
deformations. Large deformation modeling can be achieved using
nonlinear systems. Our method is agnostic of the deformation mag-
nitude and works both for linear and nonlinear systems. Model
reduction of nonlinear systems has been used for fast simulation of
deformable solids [An et al. 2008; Barbič and James 2005; Kaufman
et al. 2008; Kim and James 2009; Metaxas and Terzopoulos 1992] and
fluids [Treuille et al. 2006; Wicke et al. 2009], and for fast control
of such systems [Barbič et al. 2009]. It has also been used to simu-
late the soft-body dynamics of characters [Kim and James 2011; Xu
and Barbič 2016], for fast sound simulation [Chadwick et al. 2009;
James et al. 2006] and for frictional contact between deformable ob-
jects [Kaufman et al. 2008] and for plant dynamics [Barbič and Zhao
2011; Wang et al. 2017; Zhao and Barbič 2013]. Yang et al. investi-
gated how to accelerate the model reduction preprocessing [Yang
et al. 2015]. Hildebrandt and colleagues [Hildebrandt et al. 2011]
used model reduction for shape interpolation, whereas Harmon and
Zorin [Harmon and Zorin 2013] showed how to efficiently handle
localized deformations. Model reduction can also be combined with
boundary component mode synthesis [Yang et al. 2013], full-space
simulation [Teng et al. 2015] and projective dynamics [Brandt et al.
2018].

To date, there has been little work on computing modal deforma-
tions on GPUs. James and Pai [2002] gave a system whereby the
Uq multiplication is performed in a fragment shader using GPU as-
sembly language instructions, whereas Barbic [2007] used pbuffers

and the Cg shading language to achieve similar results. These tech-
nologies are considered obsolete by modern standards. Furthermore,
these previous papers simply calculated the matrix vs vector prod-
uct on the GPU directly, without any consideration for memory
storage, memory bank conflicts or pooling of computation for better
performance. They also only addressed a single object. In our work,
we address both single and multiple objects, using a modern GPU
programming technology (CUDA), and we extensively discuss how
to lay the data in GPU memory to maximize memory throughput.
CUDA is widely used in physically based modeling [PhysX 2008;
Tang et al. 2018; Zhang and Shen 2013]; but we are unaware of any
previous application to computing modal deformations in model
reduction.

3 BACKGROUND: MODEL REDUCTION
Model reduction starts with a high-dimensional dynamical system
such as FEM deformable dynamics for a 3d solid object with n >> 1
vertices, whereby each mesh vertex has three deformable degrees
of freedom (DOF). It then projects the dynamics to a suitable low-
dimensional space spanned by the columns of a matrix U ∈ R3n×r ,
and then the vertex displacements u ∈ R3n are approximated as u =
Uq, for some time-varying vector of reduced coordinates q = q(t ) ∈
Rr . As commonly done, we treat U as a dense matrix; different
objects can have different matrices U . In real-time applications,
the dimension r is typically small, i.e., common choices are r =
5, 10, 20, 30 or similar. The vector q satisfies some low-dimensional
ODE, which, in a generic form, can be expressed as

q̈ +A(q)q̇ + f (q) = д(t ), (1)
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whereA and f are nonlinear functions of q. Our work is agnostic of
the specific format of this equation; and as amatter of fact, the values
q = q(t ) can come from any of the model reduction variants, e.g., a
basis from data [Krysl et al. 2001], modal derivatives [Barbič and
James 2005], boundary modes [Yang et al. 2013], nonlinear inertia
derivatives [Yang et al. 2015], multi-domain dynamics [Wang et al.
2017], domain decomposition [Kim and James 2011], etc. We use
the CPU to timestep Equation 1. The specifics of this integration
depend on the employed model reduction method; we use implicit
Newmark [Wriggers 2002]. At the end of each timestep, new reduced
coordinates q, velocities q̇ and accelerations q̈ become available. Our
CUDA kernels then calculate new vertex displacements u in the
local frame of the object; and optionally if the object is undergoing
rigid body motion, also the world-coordinate position of each vertex.
The computed positions are then used for rendering and optionally
contact handling. We did not pursue contact handling in our system.
Figure 2b gives a block diagram of the computation in our system.
Compared to our system, CPU-only methods are simpler (Figure 2a),
but do not utilize the GPU (except for rendering). This means that
when the CPU is working, the GPU may be idle, and vice versa. In
our system, the GPU uses the most recently CPU-computed reduced
coordinates q and can compute the displacements u in parallel with
CPU’s other work. Furthermore, our method reduces the CPU-GPU
data transfer and as such benefits rendering. This is because only q
and the 3 × 4 transformation of each object need to be passed from
the CPU to GPU at each frame, as opposed to vertex positions.

4 CUDA DEFORMERS
We now describe our CUDA deformer to calculate the mesh ver-
tex displacements u = Uq. We do not use 8-bit or 16-bit floating
points because they often lead to visible quantization errors. We
use 32-bit single-precision floating-point computation as opposed
to 64-bit double-precision. There are three reasons for this. First,
32-bit single-precision floating point operations are much faster
than 64-bit operations: the Nvidia manual [Nvidia 2020] (5.4.1 Arith-
metic Instructions, Table 3) lists 32-bit floating point as 16x to 64x
faster than 64-bit on a typically Nvidia GTX/RTX GPU. Second, the
memory fetch and store instructions for a 4-byte datatype (“a 32-bit
word”) are faster than for a 8-byte datatype because of the data
size. In interactive applications, the final vertex displacements are
used only for rendering and collision detection; and therefore high
precision is not required. Especially for rendering, double-precision
is rarely used in OpenGL and its performance is significantly worse
than single-precision. We note that Nvidia provides a matrix multi-
plication library cuBLAS. However, the matrices in modal reduction
have a special property, namely they are thin. With multiple objects,
our method is on average 29× faster than cuBLAS (see Table 4),
as cuBLAS simply cannot do a large number of thin matrix-vector
multiplications efficiently. Even for the single-object scenario, we
observed a 20% speedup.

4.1 Computing displacements of a single object
If there is only one model-reduced object in the system, there is only
oneU matrix and one q vector to be multiplied in each timestep. For
all vertices, the displacement u can be computed by u = Uq, where

U is a modal matrix with 3n rows and r columns. The GPU memory
storage and layout of the matrixU and vector q are critical for the
algorithm performance. The displacement of degree of freedom ℓ of
the mesh is

uℓ =
r∑
j=1

Uℓ, j qj , (2)

where Uℓ, j is the element in row ℓ and column j of matrix U . As
follows from Equation 2,uℓ is computed as a series of multiplications
followed by a summation. The multiplications are independent of
each other and can be performed in parallel. We distribute the
multiplications into separate CUDA threads. Note that on modern
GPUs, the GPU always launches CUDA threads in “batches” called
warps, and the number of threads in a warp is 32. In each thread, the
program fetches a part of theU matrix and a part of the q vector and
multiplies them together. We limit the dimension of q to be under 32,
which is a common choice in real-time applications where system
speed is more important than accuracy. Therefore, the calculation
of each degree of freedom of u can be computed within 32 threads,
i.e., one CUDA warp. Finally, the computed degree of freedom uℓ is
stored into global GPU memory.
We now describe this process in greater detail, as the specific

data memory organization makes a large difference in the result-
ing system performance. Our first observation is that in order to
compute each degree of freedom of u one does not need to just
multiply the entries of U with entries of q, but also perform the
summation of the products. Whereas the multiplications are very
parallel, the summations are not and can easily decrease the paral-
lelism. Suppose that, for the sake of illustration, we have r = 30. A
naive algorithm performs the 30 multiplications in parallel, and then
a single thread adds the resulting products together. This leads to
GPU under-utilization and a decrease in performance. We speedup
the process by performing four multiplications per thread, and also
having each thread sum the four products. Let ℓ be a degree of
freedom of the mesh, 0 ≤ ℓ < 3n. Denote the k-th 4-tuple of q,Uℓ

anduℓ by qk ,U k
ℓ
anduk

ℓ
, respectively. Then, Equation 2 is rewritten

as follows:

qk = (q4k , q4k+1, q4k+2, q4k+3)
T , (3)

U k
ℓ =
(
Uℓ,4k , Uℓ,4k+1, Uℓ,4k+2, Uℓ,4k+3

)T
, (4)

ukℓ = U
k
ℓ · q

k , uℓ =
∑
k

ukℓ . (5)

After the 4-vector multiplication, the local summation of the four
elements is performed by each thread, improving concurrency. In
our r = 30 example, we now only have to add 8 floating point
values for each ℓ, whereas we previously needed 30. In this way, we
can utilize four times more active threads per warp to perform the
summation. Because the multiplications are grouped into batches
of four, each warp can compute more than one uℓ . The number of
threads needed for computing one uℓ is N =

⌈
r
4
⌉
, and therefore the

number of degrees of freedom of u that can be computed in a warp
is
⌊
32
N

⌋
≈ 128

r . Another reason to process 4 multiplications at a time
(as opposed to a higher number) is that higher numbers require
loading moreU k

ℓ
entries per warp from global GPU memory. This

increases the overhead of global memory operations. Quantities uk
ℓ
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are stored into shared memory as well. The final summation result
uℓ is stored into global GPU memory.

We also considered splitting vectors q into sizes other than 4
(the “batch size”). In order to evaluate how the batch size affects the
computation cost, we performed our CUDA kernel computation on
an object with 1,000,000 vertices using r = 16 and r = 32, and using
several batch sizes. The experiment demonstrates that our choice of
batching q into arrays of 4-vectors is optimal (Table 1).

Table 1. The time cost (in [ms]) of the Uq computation under different
batch sizes k on a model with 1,000,000 vertices, under two basis sizes,
r = 16 and r = 32. We choose k = 4 in our paper.

r
k 1 4 8 16 32

16 0.426 0.138 0.248 0.228 0.232
32 0.936 0.255 0.274 0.434 0.807

Accessing GPU memory is often the bottleneck of CUDA pro-
grams. Designing a good memory layout is therefore crucial for
performance. Because there is only one object, the computation of
each uℓ uses the same q. To avoid loading q multiple times, each
block caches q explicitly from global memory to shared memory
once at the beginning of the computation, using the __shared__
CUDA keyword. In all CUDA programs, The CUDA computation
(the “grid”) is organized into blocks, each of which contains a certain
fixed number of threads, typically a multiple of the warp size (32).
In our system, the number of threads in a block is at least 512. We
view the threads of a GPU block as logically organized into a 2D
array; call its dimensions Imax × Jmax , and denote the GPU threads
by thdI J , where 0 ≤ I < Imax and 0 ≤ J < Jmax . We set Jmax
to the number of the threads in a warp (32), and therefore, for 512
threads, we have Imax = 16.We do this because a warp is the basic
execution unit and because this avoids bank conflicts.
The shared GPU memory is organized into banks. Each CUDA

block has its own shared memory. A bank conflict in GPU shared
memory occurs when two distinct threads try to access distinct
elements in the same bank. Such conflicts greatly slow down the
GPU performance, and our method avoids them as follows. Note
that a bank conflict does not occur if two threads access the same 32-
bit word in a bank; only if different bank words are accessed. Denote
the shared memory base address that stores q by addr(q).We align
this address to a 128-byte boundary for improved performance. To
avoid bank conflicts, we store qi at

addr(qi ) = addr(q) +
(
(imod 4) × 32 +

⌊ i
4

⌋)
× 4. (6)

The storage layout of q is shown in Figure 3. Note that even though
q is stored sequentially in shared memory, the bank conflicts are
avoided. To load q into shared memory, threads thdI J where 4J+I ≤
r first load q4J+I into the corresponding shared memory address;
the other threads do nothing at this stage. Each thread thdI J , 0 ≤
I < Imax , 0 ≤ J < Jmax , can then fetch qk from shared memory and
the corresponding U k

ℓ
. The value qk can be read from the shared

memory because q has already been loaded from the global GPU
memory to the GPU shared memory as described above. In contrast,
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Fig. 3. Shared memory layout and thread access overview. In this figure,
r = 30. A warp can compute four uℓ values. The arrows indicate the
shared memory banks accessed by individual threads. The summations are
performed by the threads highlighted in yellow.

sinceU k
ℓ
is used only once perUq computation, we do not loadU

into the shared memory in advance; instead, U k
ℓ
is loaded directly

from the global memory. To enhance the loading performance,Uℓ

are stored in row-major layout in GPU memory. Since one warp
can compute several uℓ , we pack a series of continuous Uℓ into
one larger vector. We 128-byte align the base address, as shown
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Fig. 4. The layout of matrix U in global memory for r = 30. Each row is
128-byte aligned.

Fig. 5. Rendering with and without dynamically updated normals.

in Figure 4. Denote the base shared memory address for storing
the intermediate result uk

ℓ
by addr(ushared). Thread thdI J computes

u J modN
ℓ

and stores it at

addr(u J modN
ℓ

) = addr(ushared) + (I × 32 + J ) × 4. (7)

Figure 3 shows the memory layout of addr(uk
ℓ
). After all uk

ℓ
are

computed, uℓ is finally computed using a summation, by a subset of
the threads in a warp (shown in yellow in Figure 3). Specifically, it
is the threads thdI J with J modN = 0 that perform the summation.
For convenience of final vertex world position computation, uℓ is
stored as a 4-element vector rather than 3-element vector, and is
stored sequentially in global memory.

4.2 Computing dynamic normals
Using static normals produces visible artefects with deformable
objects (Figure 5), and therefore real-time dynamic normals are
highly desirable. To compute dynamic normals of each vertex, we
first compute the area-weighted face normals of the neighboring
faces, followed by summation and normalization. Table 2 gives
the dynamic normal computation time. The normals are computed
by executing a CUDA kernel that computes the face normal of
each face and stores it into GPU memory. Next, we issue a second
kernel that sums the face normals for each vertex, followed by
normalization. Alternatively, one can employ a single CUDA kernel
that computes the face normals of the neighboring faces of each
vertex and sums them to the vertex normal. The second method has
fewer memory operations but performs more duplicated arithmetic
operations.We choose the firstmethod to compute dynamic normals,
as we experimentally measured it to be much faster than the second
method on our dragon example (Table 2).

Table 2. The time cost (milliseconds) of computing dynamic normals
for a single object. When using the CPU, one does not only need to com-
pute the normals, but also needs to transfer the data to the GPUmemory for
rendering. Accordingly, we give two numbers for the CPU: the computation
time and the CPU-GPU data transferring time. On the other hand, GPU
does not need to transfer the data between CPU and GPU memory.

CPU single-stage GPU two-stage GPU

7.1 + 4.7 = 11.8 10.5 6.1

chunk 0 chunk 1 chunk 2 chunk 3

Object 0 , 
r=15, N=4

Idle

Object 0, 
r=15, N=4

Object 1 , 
r=8, N=2

Warp

Object 2, 
r=27, N=7

row 0 row 1

row 2 row 3

row 0 row 1 row 2 row 3

row 0

Fig. 6. Addressing objects with different dimensions r . In this example, the
chunk size isC = 8, and there are four chunks in a warp. For object 0, N = 4
threads are needed to compute each vertex displacement DOF. Therefore
each chunk can process two rows. In this example, two chunks are allocated
to the first object. For object 1, N = 2 and we allocated one chunk to it. For
object 2, N = 7 and we also allocated one chunk to it. Therefore, the warp
computes 4, 4, 1 displacement DOFs of objects 0, 1, 2, respectively.

4.3 Computing displacements of multiple objects
Simulating multiple model-reduced objects poses several challenges
compared to single-object simulation. Different objects i have differ-
ent modal matricesU (i ) and reduced coordinate vectors q (i ) . One
does not just have different entries of U (i ) and q (i ) , but instead dif-
ferent objects i have different dimensions ofU (i ) and q (i ) . Although
one could simply use the single-object algorithm of Section 4.1 on
each object, doing so is extremely inefficient when there are many
objects present. We now give a parallel GPU algorithm to accelerate
theU (i )q (i ) computations for multiple objects.
Consider first the simple case where the dimension r of each

object is the same. This case is easy to address and can be solved by
adapting the single-object algorithm. Each thread block now needs
to load more than one q because vectors q are different for different
objects. Because the number of columns is the same for all objects,
we can stack the individual U matrices into one large matrix U .
Each thread performs the same work as before, except the memory
addresses ofU and q are different for each object.
To address the general case where r is different for different ob-

jects, we “uniformize” the different values of r (i ) . The key idea is that
we can reshape matrixU (i ) , as follows. Pick an integerQ (i ) ≥ 1 and
append rows 2, . . .Q (i ) to row 1; append rowsQ (i )+2, . . .Q (i )+Q (i )

to rowQ (i ) + 1, etc. This produces a reshaped matrix whose number
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Fig. 7. Reshaping the matrix to minimize the number of CUDA ker-
nel invocations.

of rows and columns is Q (i ) times smaller, and larger, respectively
(see Figure 7). We can now also replicate the reduced coordinate
vector Q (i ) times. We then multiply the reshaped matrix with the
replicated reduced coordinate vector, except that we only perform
the multiplications and defer the summation, as in the single-object
case. By employing dedicated summation threads, we can compute
the DOFs of the displacement vector u (i ) . The advantage of reshap-
ing is that it minimizes the number of CUDA kernel invocations,
and therefore speeds up the CUDA computation. This is because the
reshaping uniformizes the number of columns of U across all the
objects. Therefore, we can perform the u = Uq computation using a
single (or a few) number of kernels, as opposed to having a dedicated
CUDA kernel for each value of r . In our examples, our method is on
average 4× faster than processing each distinct r individually, and
25× faster than processing each object using a single-object method
of Section 4.1.
The first “naive” approach to setting Q (i ) is to set it so that we

have Q (i )N (i ) ≈ 32. The logic behind this equation is that we need
N (i ) threads to process each DOF, hence each warp can process
Q (i ) =

⌈
32
N (i )

⌉
DOFs. Hence, we need to arrange Q (i ) rows in the

column direction. We tried this approach and it is inefficient due
to too many idle threads. Therefore, we need a finer-granularity
control over Q (i ) . We achieve this by dividing the 32 threads of
a warp into equally sized “chunks” of size C (i ) ≤ 32. A chunk
computes several vertex displacement DOFs of the same object, but
not of different objects. The entire chunk must be processed by a
single warp. We first group four consecutive entries in each row
of U (i ) into a single unit, to be processed by a single thread, as
in the single object algorithm. Matrix U (i ) can now be seen as a
“condensed” 3n × N (i ) matrix whereby each entry is a 4-tuple. The
number of vertex displacement DOFs that a chunk can compute
is Q (i ) =

⌊
C (i )

N (i )

⌋
. We therefore reshape the modal matrixU (i ) and

vector q (i ) using the factor Q (i ) as described above. The reshaped
matrix has C (i ) columns and

⌈
3n (i )

Q (i )

⌉
rows. The process is illustrated

in Figure 6.
Because there are many chunks in each block, a blockmay process

one or more objects. Therefore, a block needs to access the reduced
coordinates for those objects. Because the threads in awarpmay load
the q (i ) vector for different objects, we do not cache q (i ) in shared

Copy q to
GPU memory

Uq 
Computation

Copy q to
GPU memory

Uq 
Computation

Copy q to
GPU memory

Uq 
Computation

Time

CUDA Stream 0

CUDA Stream 2

CUDA Stream 1

Fig. 8. Asynchronous kernel execution. In this example, there are three
separate chunk sizes; each chunk size is given its own kernel and memory
copy and is sent to its own stream. In our actual system, we only use two
chunk sizes (6 and 8), and hence we only employ 2 streams.

chunk 0 chunk 1 chunk 2 Idle

0 9 18 27 32

chunk 0

0 8

chunk 1 chunk 2 chunk 3

16 24 32

C =9

=8

N=3

idle idle

N=3

chunk 0

0 6

chunk 1

12 24 32
=6

N=3
chunk 2 chunk 3 chunk 4 Idle

18 30

C

C

One chunk processes 3 DOFs.

The warp processes 9 DOFs.

One chunk processes 2 DOFs.

The warp processes 8 DOFs.

One chunk processes 2 DOFs.

The warp processes 10 DOFs.

Fig. 9. Effect of changing the chunk size C . In this example, N = 3 threads
are needed to compute each vertex displacement DOFs. When C = 9, each
chunk can process C/N = 3 DOFs. Because there are 3 chunks in a warp, a
warp can process 3 × 3 = 9 DOFs. Similar calculations are performed for
C = 8 and C = 6. In this example, C = 6 is the best design.

GPU memory. Instead, we directly load them from global GPU
memory. This is because the re-usability of q (i ) is much lower than
with single-object computation. WhenU (i )q (i ) is computed, threads
need to know which q (i ) should be loaded, where the compute
displacement DOFs should be stored, and N (i ) . Accordingly, we
store this information into a meta-data vector to assist with the
U (i )q (i ) computation for each thread. The output displacements u
are stored in the same way as in the single object simulation, namely
sequentially in memory for all objects.

We now describe howwe selectC (i ) . This choice is very important
as it influences the performance of the algorithm and the utilization
of the GPU. Values of C (i ) greater than 8 are not recommended
because then a warp can contain at most 3 chunks which leads
to many idle threads. Figure 9 illustrates this problem. In contrast,
too small values C (i ) cannot accommodate many different values
of N (i ) . For efficient thread utilization, we use a different C for
different objects. Because r (i ) ≤ 32, we have 1 ≤ N (i ) ≤ 8. To
fully occupy the chunks, we use C = 8 when N equals 4 and 8, and
C = 6 when N equals 1, 2, 3 or 6. For N = 5 and N = 7, we first
attempted to use C = 5 and C = 7, respectively, leading to four
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different chunk sizes. This strategy guarantees that there are no idle
threads in any chunk. Note that it is possible to use C = 8 when
N equals 1 or 2. However, we experimentally determined that this
choice is not as efficient asC = 6 (Table 3). Each chunk size requires
writing a separate CUDA kernel for efficiency. We can employ the
CUDA streaming technology to parallelize kernel execution and
data transfer (Figure 8). However, having more kernels comes at an
increased time cost of preparing the data and launching the kernels.
We experimentally determined that using 4 chunk sizes does not pay
off (Table 3). Instead, using a single chunk size C = 8, or 2 distinct
chunk sizes C = 8 and C = 6, gives the best performance over all
examples. Employing 2 distinct chunk sizes C = 8 and C = 6 is
more compact and better accommodates all values of N (especially
N = 5). Therefore, we ultimately converged on using C = 6 when
N = 5 and C = 8 when N = 7.

Table 3. Evaluation of performance under various chunk sizes C (i ) .
Table gives the time cost of the Uq computation in milliseconds.

species
C (i )

8 6,81 6,82 5,6,7,8

Conifer (single) 0.18 0.16 0.18 0.20
Peach tree 0.38 0.61 0.62 0.73
Broad-leaved tree 0.29 0.29 0.72 0.32
Treesketch 0.29 0.29 0.30 0.30
Eastern hemlock 0.47 0.47 0.60 0.52

1 : For N (i ) = 1, 2, 3, 5, 6, we have C (i ) = 6. For N (i ) = 4, 7, 8, we have C (i ) = 8.
2 : For N (i ) = 3, 5, 6, we have C (i ) = 6. For N (i ) = 1, 2, 4, 7, 8, we have C (i ) = 8.

4.4 Multi-object transformations
The displacements u computed in Sections 4.1 and 4.3 are expressed
in the local coordinate frame of each object. We now need to com-
pute the vertex positions and normals in the world coordinate sys-
tem, by taking into account the global position and orientation of
each object. The resulting vertex positions and normals can then be
used for rendering.

Triangle meshes are commonly used to represent objects in com-
puter graphics. A triangle mesh is given by a list of triangles. The
triangles are represented by their vertices. Denote the local coordi-
nate frame displacement of vertex j in object i by u(i)j , the vertex’s

world-coordinate position by x (i )j . Denote the rest (neutral mesh)

position by x (i )j . Also, denote the object’s rigid rotation by R (i ) and
translation by p (i ) . The vertex’s position is

x
(i )
j = R (i )

(
x
(i )
j + u

(i )
j

)
+ p (i ) . (8)

The rotation matrix R (i ) is a 3 × 3 matrix. We can use a 4 × 4 homo-
geneous matrix packing both rotation and translation. The equation
of updating x (i )j becomes

x
(i )
j = T

(i )
(
x
(i )
j + u

(i )
j

)
(9)

T (i ) = P (i )R (i ) , (10)

where P (i ) is a 4 × 4 translation matrix. Accordingly, there will only
be one matrix-vector multiplication and one vector addition for

each vertex. Using a similar idea as in Uq computation, we load
commonly used data to shared GPUmemory. Transformationmatrix
T (i ) and the undeformed mesh positions are loaded into shared
memory. Positions are represented as 4D vectors in homogeneous
coordinates. Each matrix-vector multiplication therefore consists of
4 dot products. Each thread computes one dot product, i.e., one DOF
of a vertex position. Therefore, each warp calculates eight vertices.
We assume that each object has at least 4 vertices, so that each

warp processes at most two objects; this avoids bank conflicts. The
transformation matrix is stored row major and sequentially in the
shared memory, so there are not any read overheads. Additionally,
there aren’t any bank conflicts when reading the matrices. In ad-
dition to the matrix, the rest position of each vertex is loaded into
shared memory before the computation, because they are frequently
used by matrix multiplication. They are separately stored in shared
memory so that each thread in a warp can read the data from the
corresponding bank without any conflicts. The shared memory lay-
out is shown in Figure 10. Every time the computation starts, the
program first loads the data to shared memory. Thread thdI J loads
the (J mod 16)-th element in

(
2I +

⌊ J
2
⌋ )
th transformation matrix

of the block. Because each block may load different transformation
matrices, we precompute (during initialization) the specific data to
be loaded by each thread. After matrix is loaded into shared memory,
we load the position vectors into shared memory. Thread thdI J in
block k loads the (J mod 4)-th element of the

(
Nk + 8I +

⌊ J
4
⌋ )
-th

vertex, where N is the number of vertices each block can compute;
this value is constant for all the blocks. When the positions are
fetched from global memory, we add the displacements to them
before storing them to shared memory. Before the matrix-vector
multiplication, we need to synchronize all threads inside the block
to guarantee that everything the computation needs has been suc-
cessfully loaded into the shared memory. After the data is loaded
into shared memory, each thread calculates one degree of freedom
of a vertex and stores the result back to global memory. After the
vertex position are calculated, we dynamically update the normals
of all vertices in all objects using the algorithm of Section 4.2.

4.5 Data communication
Figure 11 shows the data communication between and within de-
vices. PackedU matrices and vertex rest positions and normals are
constant at runtime so they are copied from the CPU memory into
the GPU memory when the system is initialized. Quantities q,u,T
and the vertex position buffer are passed between the CPU and
the GPU at each timestep. To facilitate the data transfer, we use
page-locked memory allocated by cudaHostAlloc. In each timestep,
CPU computes new q, packs it for CUDA computation and stores it
to the host (CPU) q buffer. CPU only writes to the q buffer and there-
fore we designate the host q buffer as write-combine memory [Intel
1998]. Because of the write-combining ability, write performance is
greatly improved. After the CPU q buffer is updated, the data will be
transferred to GPU memory. In our system, there are multipleUq
kernel executions and buffer copy operations. To improve the con-
currency, we perform kernel executions and asynchronous memory
copies using cudaStream, which parallelizes them (Figure 8). After
theUq computation, the resulting u is placed into the GPU u buffer.
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Fig. 10. The layout of the shared memory and the bank accesses of threads
for computing vertex world-coordinate positions. Differently colored threads
are processing different objects. Different shared memory colors denote
different types of data: blue = transformation matrices, green = vertex
positions. The x,y,z,w subscripts denote the components of the homogeneous
4-vectors.
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Fig. 11. Data communication between buffers and devices.

One only needs to copy this buffer back to the CPU if performing
collision detection; otherwise, there is no need to copy because
the computed u can be directly used for the subsequent rendering
pipeline.
After the Uq computation, we compute the world-coordinate

quantities for each vertex (Section 4.4). The deformationu is already
stored in GPU memory. As per the transformation, we treat it in the
same way as q, and therefore we designate the CPU transformation
buffer to also be write-combined memory. Additionally, we update
the GPU transformation buffer after the start of the asynchronous
copying of theq buffer to the GPU. This ensures that transferring the
transformation matrix data proceeds in parallel with theUq compu-
tation. The world-coordinate positions and normals are shared by
CUDA and OpenGL. CUDA gains control over the OpenGL buffer
objects before writing the positions and normals to them. After
the kernel executions are completed, CUDA unmaps the OpenGL
buffers and then the rendering begins. While the GPU computes
world-coordinate quantities, CPU cannot yet retrieve data from the
GPU vertex position buffer. To make vertex positions viable dur-
ing the GPU computation, we use two buffers for vertex positions.
Swapping the buffers is fast because both buffers are in the same
GPU memory. One of the position buffers is used to communicate
with the CPU, and we designated it as mapped portable page-locked
memory [Nvidia 2020]. In this way, the data is automatically syn-
chronized to the CPU (without explicitly calling cudaMemcpy), and
can be accessed by all the CPU cores.

5 RESULTS
We used an Intel Xeon W-3275 workstation (28 physical cores @
2.5 GHz), with 192GB of RAM, and Nvidia RTX 2080 Ti. Tables 5
and 4 compare the performance of our system against a CPU imple-
mentation for a single object and multiple objects, respectively.

Because the floating-point multiplication and addition operations
are not greatly affected by the data specifics, we use randomly
generated inputs to test theUq computation algorithm for a single
object. The CPU algorithm uses Intel MKL with 56 threads (all CPU
cores are used). For each (n, r ) pair, the algorithm was tested via
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Table 4. Multi-object performance: Table gives the time to perform a single dynamic reduced timestep to update the q values (q), theUq computation time
(Uq or cuBLASUq for cuBLAS library; Section 4.3), time for transformations (T; Section 4.4), frames per second (FPS), GPU memory usage (mem) and #kernels
(#krnl) used in Uq computation. Note that only one of Uq or cuBLAS Uq is needed; we give both to provide a performance comparison. Conifer is shown in
Figure 1 (here we give statistics for one conifer), and Eastern hemlock is shown in Figure 12. We give two numbers for the CPU Uq and T computations.
The first denotes the unrealistic situation (performed for experiment only) whereby the CPU does not need to dynamically update the q values. The second
denotes the actual time cost during the simulation that has to update q; as can be seen, the CPU time is heavily affected. Column #objects gives the number
of deformable objects in each example; the number in parenthesis is the total number of objects, including deformable and rigid objects.

Species geometry CPU GPU
#objects total n total r q (ms) Uq (ms) T (ms) FPS Uq (ms) cuBLASUq (ms) T (ms) FPS mem (MB) #krnl

Conifer (single) 43 (644) 7,543 360 16.73 0.11/12.84 0.36/3.15 35 0.16 0.46 0.26 60 5.8 1
Peach tree 237 (22,659) 273,003 2,950 29.41 0.70/34.92 0.85/36.88 4 0.61 2.52 0.53 20 119.6 2
Broad-leaved tree 419 (7,003) 288,542 3,613 35.01 0.76/36.29 1.68/18.66 6 0.29 4.41 0.75 29 150.9 2
Eastern hemlock 2,866 (27,778) 190,466 16,793 71.43 3.13/34.79 5.47/37.51 4 0.47 21.24 1.02 15 165.2 2
Treesketch 2,875 (2,875) 44,404 21,178 11.34 3.75/43.08 2.62/6.76 11 0.29 22.90 0.33 70 29.7 2

Table 5. Ratios of CPU to GPU running times for the single object Uq
computation, under varying numbers of vertices (n) and modal dimensions
(r ).

r
n 103 104 105 106 107

5 47.7 18.0 17.8 7.2 8.0
10 18.5 18.8 15.5 5.5 6.5
15 19.9 20.2 11.2 4.9 6.5
20 19.9 18.9 9.5 6.2 6.0
25 20.4 20.8 9.2 6.3 6.1
30 19.8 18.3 9.8 6.2 6.1

100 random iterations using the CPU method, and our CUDA GPU
method. Table 5 gives the ratios of the average running times; it
can be seen that the CUDA implementation is substantially faster
than the CPU method. We also tested our dynamic normal CUDA
implementation on our dragon example (Figures 5, 13). It is 2x faster
than the multi-threaded CPU implementation as shown in Table 2.
We illustrate our multi-object technique on botanical model-

reduced simulations on 5 different examples (Figures 1,12,14). Every
part of tree morphology such as a leaf or a branch is a separate
object. Substructuring is used to compute their model-reduced dy-
namics and world-coordinate rotations and translations [Barbič and
Zhao 2011]. Results are given in Table 4. Because there are many ob-
jects (leaves, branches) in each example, the calculation of reduced
coordinates q requires a significant amount of the CPU resources.
As a result, there are few resources left for the Uq computation
and object transformations; and hence, our CUDA deformer greatly
speeds up the system. With our method, we observed an average
speedup of 97x in the Uq computation, and 33x in transforming
the objects. To remove the effect of dynamic timestepping of q, we
also performed an experiment whereby only the Uq computation
and object transformations were performed. Despite the fact that
such a scenario rarely exists in practice, our method outperformed
the CPU implementation on average by 5x in Uq computation, and
4x in transforming the objects. We also compared the time cost of
ourUq computation with CUDA built-in cuBLAS, and measured an
average speedup of 29x over cuBLAS in our multi-object examples.

Fig. 12. Real-time simulation of this complex plant (27,778 deformable
objects) at 14 FPS, thanks to our CUDA modal displacement deformer.
Timestepping the reduced coordinates q (i ) takes 71 msec. Observe that
this corresponds to 14 FPS = 1 / (71 msec); this is possible because our
method calculates Uq and the transformations in parallel with the CPU
timestepping of q (i ) . For comparison, a CPU system runs at 4 FPS.

Moreover, as the number of objects and the reduced dimension in-
crease, our time costs remain within the same order of magnitude.
In contrast, the time cost of cuBLAS increases significantly.
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6 CONCLUSION
Modal displacements are an important bottleneck in model-reduced
systems. We gave a method to calculate modal displacements us-
ing CUDA, and demonstrated that this substantially accelerates
real-time simulations that use model reduction. Our method works
by carefully organizing the computation into larger chunks that
better fit the architecture and memory characteristics of modern
GPUs. We accelerated both individual model-reduced objects and
multi-body dynamics simulations involving multiple model-reduced
objects. Our method is limited to modal size of 32 and less. While
this can accommodate most real-time model-reduced systems in
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Fig. 13. Real-time simulation of a singlemodel-reduced dragonwith reduced
dimension r = 15 and 455,568 vertices. The user pulled a single vertex (red
dot) to the right, shown in the red arrow. Our CUDA-enabled simulation runs
at 52 FPS, whereas the CPU system runs at 16 FPS. During each timestep,
it only takes 0.5ms to compute the reduced displacements q . In addition,
our method takes 1.0ms to compute Uq . For comparison, the CPU system
takes 3.1ms to compute Uq .

Fig. 14. Broad leaf model (left), peach tree model (middle) and treesketch
model (right).

practice, future work could explore how to relax this requirement.
We only calculated modal displacements on the GPU, whereas the
low-dimensional dynamics is still performed on the CPU. Although
this is typically not an issue, it would be interesting to explore how
to timestep low-dimensional dense dynamical systems using CUDA.
We did not investigate collision detection and response in our work.
For CPU collision detection and response, the computed vertex po-
sitions must be copied back to the CPU. Although this incurs data
transfer costs, our method greatly accelerates the computation of
vertex positions, which would otherwise need to be done on the
CPU. GPU collision detection and response has been widely stud-
ied [Tang et al. 2011], and can benefit from our method because the
vertex positions are already on the GPU, similarly to rendering.
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