Modeling of Personalized Anatomy using Plastic Strains

BOHAN WANG, University of Southern California, USA

GEORGE MATCUK, University of Southern California, USA

JERNE]J BARBIC, University of Southern California, USA

Template Our output

(b) MRl slice

(a) témplate shape

MRl slice

(c) our output shape

(d) maximum principal stretch

29

0.0
16.0

(e) principal stretch ratio (anisotropicity)

Fig. 1. We optimized the shape of this hand muscle (Adductor Pollicis) to match the MRI scan. (a) template shape [C. Erolin 2019]; (b) representative
MRI slice [Wang et al. 2019]; we rigidly aligned the template mesh onto the markers in the MRI scan, producing the white contour which is obviously incorrect
(deeply penetrates the bone; and extends out of the volume of the MRI-scanned hand); (c) our output shape, optimized to the MRI scan; the white contour now
matches the scan; (d,e) large anisotropic spatially varying strains accommodated by our method (d: maximum principal stretch; e: ratio between maximum

and minimum principal stretch).

We give a method for modeling solid objects undergoing large spatially
varying and/or anisotropic strains, and use it to reconstruct human anatomy
from medical images. Our novel shape deformation method uses plastic
strains and the Finite Element Method to successfully model shapes under-
going large and/or anisotropic strains, specified by sparse point constraints
on the boundary of the object. We extensively compare our method to stan-
dard second-order shape deformation methods, variational methods and
surface-based methods and demonstrate that our method avoids the spiki-
ness, wiggliness and other artefacts of previous methods. We demonstrate
how to perform such shape deformation both for attached and un-attached
(“free flying”) objects, using a novel method to solve linear systems with
singular matrices with a known nullspace. While our method is applicable
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to general large-strain shape deformation modeling, we use it to create per-
sonalized 3D triangle and volumetric meshes of human organs, based on
MRI or CT scans. Given a medically accurate anatomy template of a generic
individual, we optimize the geometry of the organ to match the MRI or CT
scan of a specific individual. Our examples include human hand muscles, a
liver, a hip bone, and a gluteus medius muscle (“hip abductor”).
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1 INTRODUCTION

Modeling and simulating human anatomy is very important in many
applications in computer graphics, animation, medicine, film and
real-time systems such as games and virtual reality. In this paper,
we demonstrate how to model anatomically realistic personalized
three-dimensional shapes of human organs, based on medical im-
ages of a real person, such as Magnetic Resonance Imaging (MRI)
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or Computed Tomography (CT). Such modeling is crucially impor-
tant for personalized medicine. For example, after scanning the
patient with an MRI or CT scanner, doctors can use the resulting
3D meshes to perform pre-operative surgery planning. Such models
are also a starting point for anatomically based human simulation
for applications in computer graphics, animation and virtual reality.
Constructing volumetric meshes that match an organ in a medical
image can also help with building volumetric correspondences be-
tween multiple MRI or CT scans of the same person [Rhee et al.
2011], e.g., for medical education purposes.

Although the types, number and function of organs in the hu-
man body are generally the same for any human, the shape of
each individual organ varies greatly from person to person, due
to the natural variation across the human population. The shape
variation is substantial: any two individuals’ organs Q; ¢ R® and
Q, C R? generally vary by a non-trivial shape deformation func-
tion @ : Q1 — Qp that often consists of large and spatially varying
anisotropic strains (see Figure 1). By “large anisotropic strain”, we
mean that the singular values of the 3x3 gradient matrix of ¢ are
both different to each other and substantially different from 1.0, i.e.,
the material locally stretches (or compresses) by large amounts; and
this amount is different in different directions and varies spatially
across the model.

We tackle the problem of how to model such large shape vari-
ations, using volumetric 3D medical imaging (such as MRI or CT
scan), and a new shape deformation method capable of modeling
large spatially varying anisotropic strains. We note that the bound-
ary between the different organs in medical images is often blurry.
For example, in an MRI of a human hand, the muscles often “blend”
into each other and into fat without clear boundaries; a CT scan has
even less contrast. We therefore manually select as many reliable
points ("markers") as possible on the boundary of the organ in the
medical image; some with correspondence (“landmark constraints”)
to the same anatomical landmark in the template organ, and some
without (“ICP constraints”). Given a template volumetric mesh of
an organ of a generic individual, a medical image of the same organ
of a new individual, and a set of landmark and ICP (Iterative Closest
Point) constraints, our paper asks how to deform the template mesh
to match the medical image.

Our first attempt to solve this problem was to use standard shape
deformation methods commonly used in computer graphics, such
as as-rigid-as-possible energy (ARAP) [Sorkine and Alexa 2007],
bounded biharmonic weights (BBW) [Jacobson et al. 2011], bihar-
monic weights with linear precision (LBW) [Wang et al. 2015a], and
a finite element method static solver (FEM) [Barbi¢ et al. 2009]. As
shown in Section 3.8, none of these methods was able to capture the
large strains observed in medical images. Namely, these standard
methods either cannot model point constraints when the shape
undergoes large spatially varying strains, or introduce excessive
curvature. For example, in the limit where the tetrahedral mesh is
refined to finer and finer tets, the FEM static solver produces spikes
(Figure 2, Appendix G). We explore limitations of other methods in
Section 3.8.

We give a new shape deformation method that uses plastic strains
and the Finite Element Method to successfully model shapes un-
dergoing large and/or anisotropic strains, controlled by the sparse
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Fig. 2. Second-order methods produce spiky outputs as the tet mesh
is refined. Here, we show the output of an FEM static solver under a
single hard point constraint (seen in (a)), i.e., we minimize the FEM elastic
energy under the shown hard point constraint. Bunny is fixed at the bottom.
Poissons’s ratio is 0.49. As we increase the tet mesh resolution in (b)-(e),
the spike becomes progressively narrower, which is undesirable. Changing
the elastic stiffness (Young’s modulus) of the bunny does not help (see
Appendix G). Converting the constraint into a soft spring constraint also
does not help (f); now, the constraint is not even satisfied.

landmark and ICP point constraints on the boundary of the object.
In order to do so, we formulate a nonlinear optimization problem
for the unknown plastic deformation gradients of the template shape
Q1, such that under these gradients, the shape Q; transforms into a
shape that matches the medical image landmark and ICP constraints.
The ICP constraints are handled by properly incorporating the ICP
algorithm into our method. We note that in solid mechanics, plastic
deformation gradients are a natural tool to model large volumet-
ric shape variations. We are, however, unaware of any prior work
that has used plastic deformation gradients and the Finite Element
Method to model large-strain shape deformation.

In order to make our method work, we needed to overcome several
numerical obstacles. The large-strain shape optimization problem
is highly nonlinear and cannot be reliably solved with off-the-shelf
optimizers such as the interior point method [Artelys 2019]. Further-
more, a naive solution requires solving large dense linear systems
of equations. We demonstrate how to adapt the Gauss-Newton
optimization method to robustly and efficiently solve our shape
deformation problem, and how to numerically avoid dense linear
systems. In order to optimize our shapes, we needed to derive ana-
lytical gradients of internal elastic forces and the tangent stiffness
matrix with respect to the plastic strain, which will be useful for
further work on using plasticity for optimization and design of 3D
objects. In addition, we address objects that are attached to other
objects, such as a hand muscle attached to one or more bones; as
well as un-attached objects. An example of an un-attached object is
a liver, where the attachments to the surrounding tissue certainly
exist, but are not easy to define. It is practically easier to just model
the liver as an un-attached object. In order to address un-attached



objects, we give a novel numerical method to solve linear systems
with singular matrices with a known nullspace. Such linear sys-
tems are commonly encountered in applications in geometric shape
modeling and nonlinear elastic simulation. Our examples include
human hand muscles, a liver, a hip bone and a hip abductor muscle
(“gluteus medius”), all of which undergo substantial and non-trivial
shape change between the template and the medical image.

2 RELATED WORK

In this section, we introduce closely related work and discuss the
relationship to our work.

Geometric shape modeling. Geometric shape modeling is an im-
portant topic in computer graphics research; e.g., see the Botsch
and Sorkine [Botsch and Sorkine 2008] survey and the SIGGRAPH
course notes by Alexa et al. [Alexa et al. 2006]. Popular methods
include variational methods [Botsch and Kobbelt 2004], Laplacian
surface editing [Sorkine et al. 2004], as-rigid-as-possible (ARAP)
deformation [Igarashi et al. 2005; Sorkine and Alexa 2007], coupled
prisms [Botsch et al. 2006] and partition-of-unity methods such as
bounded biharmonic weights (BBW) [Jacobson et al. 2011] and bihar-
monic weights with linear precision [Wang et al. 2015a]; we provide
a comparison in Section 3.8 and in several other Figures in the paper.
Our method reconstructs the surface shape from a set of un-oriented
point observations; this goal is similar to variational implicit surface
methods [Huang et al. 2019; Turk and O’Brien 1999]; we give a com-
parison in Section 4. Point clouds can also be used to optimize rest
shapes [Twigg and Ka¢i¢-Alesi¢ 2011] and material properties of 3D
solids [Wang et al. 2015b]. Such a method cannot be applied to our
problem because it assumes a 4D dense point cloud input; whereas
we assume 3D sparse point inputs as commonly encountered in
medical imaging. Point constraint artefacts of second-order meth-
ods can be addressed using spatial averaging [Bergou et al. 2007;
Kavan et al. 2011]; however this requires specifying the averaging
functions (often by hand) and, by the nature of averaging, causes
the constraints to be met only approximately. Our method can meet
the constraints very closely (under 0.5 mm error in our examples),
i.e., in the precision range of the medical scanners.

Plasticity. Elastoplastic simulations are widely used in computer
animation. O’Brien et al. [2002] and Muller and Gross [2004] used
an additive plasticity formulation, whereas Irving et al. [Irving et al.
2004] presented a multiplicative formulation and argued that it is
better for handling large plasticity; we adopt multiplicative formu-
lation in our work. The multiplicative model was used in many
subsequent publications to simulate plasticity, e.g., [Bargteil et al.
2007; Chen et al. 2018; Stomakhin et al. 2013]. Because plasticity
models shapes that undergo permanent and large deformation, it
is in principle a natural choice also for geometric shape modeling.
However, such an application is not straightforward: an incorrect
choice of the optimization energy will produce degenerate outputs,
elastoplastic simulations in equilibrium lead to linear systems with
singular matrices, optimization requires second-order derivatives
for fast convergence, and easily produces large linear systems with
dense matrices. We present a solution to these obstacles. To the best
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of our knowledge, we are the first paper to present such a compre-
hensive approach for using plasticity for geometric shape modeling
with large and anisotropic strains.

Anatomically based simulation. Anatomically based simulation of
the human body has been explored in multiple publications. For
example, researchers simulated human facial muscles [Sifakis et al.
2005], the entire upper human body [Lee et al. 2009], volumetric
muscles for motion control [Lee et al. 2018] and hand bones and
soft tissue [Wang et al. 2019]. Anatomically based simulation is
also popular in film industry [Tissue 2013]. Existing papers largely
simulate generic humans because it is not easy to create accurate
anatomy personalized to each specific person. Our method can
provide such an input anatomy, based on a medical image of any
specific new individual.

Medical image registration. Deformable models are widely used in
medical image analysis [McInerney and Terzopoulos 2008]. Extract-
ing quality anatomy geometry from medical images is difficult. For
example, Sifakis and Fedkiw [2005] reported that it took them “six
months” (including implementing the tools) to extract the facial
muscles from the visible human dataset [U.S. National Library of
Medicine 1994], and even with the tools implemented it would still
take “two weeks”. With our tools, we are able to extract all the 17
muscles of the human hand in 1 day (including computer and user-
interaction time). Bones generally have good contrast against the
surrounding tissue and can be segmented using active contour meth-
ods [Székely et al. 1996] or Laplacian-based segmentation [Grady
2006; Wang et al. 2019]. For bones, it is therefore generally possible
to obtain a “dense” set of boundary points in the medical image.
Gilles et al. [Gilles et al. 2010] used this to deform template skele-
ton models to match a subject-specific MRI scan and posture. They
used the ARAP energy and deformed surface meshes. In contrast,
we give a method that is suitable for soft tissues where the image
contrast is often low (our hand muscles and liver examples) and
that accommodates volumetric meshes and large volumetric scaling
variations between the template and the subject. If one assumes
that the template mesh comes with a registered MRI scan (or if
one manually creates a template mesh that matches a MRI scan),
musculoskeletal reshaping becomes more defined because one can
now use the pair of MRI images, namely the template and target,
to aid with reshaping the template mesh [Gilles and Magnenat-
Thalmann 2010; Gilles et al. 2006; Schmid et al. 2009]. The examples
in these papers demonstrate non-trivial musculoskeletal reshaping
involving translation and spatially varying large rotations with a
limited amount of volumetric stretching (Figure 14 in [Gilles and
Magnenat-Thalmann 2010]). This is consistent with their choice of
the similarity metric between the template and output shapes: their
reshaping energy tries to keep the distance of the output mesh to
the medial axis the same as the distance in the template [Gilles and
Magnenat-Thalmann 2010], which biases the output against volume
growth. For bones, a similar idea was also presented in [Schmid
et al. 2011; Schmid and Magnenat-Thalmann 2008], where they did
not use a medial-axis term to establish similarity to a source mesh,
but instead relied on a PCA prior on the shapes of bones, based on
a database of 29 hip and femur bone shapes. Our work does not
require any pre-existing database of shapes. Because our method
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uses plasticity, it can accommodate large and spatially varying volu-
metric stretching between the template and the subject. We do not
need a medical image for the template mesh. We only assume that
the template mesh is plausible. Of course, the template mesh itself
might have been derived from or inspired by some MRI or CT scan,
but there is no requirement that it matches any such scan.

Non-rigid ICP. Non-rigid ICP methods are widely used for deforming
the template mesh to a given target surface mesh (or a dense point
cloud) [Allen et al. 2003; Amberg et al. 2007; Li et al. 2008]. To apply
ICP to medical imaging, one can first delineate the organs in medical
images using segmentation techniques, and then deform a template
mesh to the segmented surface. In prior work, this has been done by
segmenting dense organ boundaries [Gietzen et al. 2019; Niculescu
et al. 2009]. Organ boundaries in medical images are often not clear,
and therefore segmenting dense boundaries is a laborious process,
and even then, the boundaries are often unreliable. Our work only
requires identifying a sparse set of boundary points in the medical
image. Combining such sparse inputs with ICP methods has not been
investigated in prior work. One could apply existing ICP methods to
a sparsely sampled boundaries, but this produces suboptimal results
under large strains and rotations (Figures 8, 24, 26). It is important
to emphasize that the source of errors in previous methods is not
the miss-correspondence of sparse markers: suboptimal results are
produced even if given perfect correspondence (Figure 26).

Anatomy Transfer. Recently, great progress has been made on anatom-
ically based simulations of humans. Anatomy transfer has been
pioneered by Dicko and colleagues [Dicko et al. 2013]. Anatomi-
cal muscle growth and shrinkage have been demonstrated in the
“computational bodybuilding” work [Saito et al. 2015]. Kadlecek et
al. [2016] demonstrated how to transfer simulation-ready anatomy
to a novel human, and Ichim et al. [Ichim et al. 2017] gave a state-of-
the-art pipeline for anatomical simulation of human faces. Anatomy
transfer and a modeling method such as ours are complementary
because the former can interpolate known anatomies to new sub-
jects, whereas the latter provides a means to create the anatomies in
the first place. Namely, anatomy transfer requires a quality anatomy
template to serve as its source, which brings up the question of how
one obtains such a template. Human anatomy is both extremely
complex for each specific subject, and exhibits large variability in
geometry across the population. Accurate templates can therefore
only be created by matching them to medical images. Even if one
creates such a template, new templates will always be needed to
model the anatomical variability across the entire population; and
this requires an anatomy modeling method such as ours.

3 SHAPE DEFORMATION WITH LARGE SPATIALLY
VARYING STRAINS

Given a template tet mesh of a soft tissue organ for a generic indi-
vidual, as well as known optional attachments of the organ to other
objects, our goal is to deform the tet mesh to match a medical image
of the organ of a new individual. We use the term “medical image”
everywhere in this paper because this is standard terminology; this
does not refer to an actual 2D image, but to the 3D medical volume.
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Fig. 3. Our shape deformation setup. Our optimization discovers plastic
strains Fj, and vertex positions x so that the model is in elastic equilibrium
under the attachments, while meeting the medical image landmark and
closest point constraints as closely as possible. The presence of attachments
is optional; our work handles both attached and un-attached objects.

We now describe how we mathematically model the attachments
and medical image constraints.

3.1 Attachments and medical image constraints

We start with a template organ tet mesh M. We denote its vertex
positions by ¥ € R3", where n is the number of tet mesh vertices.
In this paper, we use bold text to represent the quantities for the
entire mesh and non-bold text to represent the quantities for a
single vertex or element in the FEM mesh. We would like to dis-
cover vertex positions x € R3" such that the organ shape obeys
the attachments to other organs (if they exist), and of course the
medical image. The attachments are modeled by known material
positions X; € M, i = 1,...,t that have to be positioned at known
world-coordinate positions x; € R3,i = 1,...t (Figure 3). The
medical image constraints come in two flavors. First, there are land-
mark constraints whereby a point on a template organ is manually
corresponded to a point in the medical image, based on anatomy
knowledge. Namely, landmark constraints are modeled as material
positions Y; € M, i = 1,...,q, that are located at known world-
coordinate positions y; € R? in the medical image. Observe that
landmark constraints are mathematically similar to attachments.
However, they have a different physical origin: attachments are a
physical constraint that is pulling the real-world organ to a known
location on another (fixed, un-optimized) object; for example, a mus-
cle is attached to a bone. With landmarks, there is no such physical
force in the real-world; namely, landmarks (and also closest-point
constraints) are just medical image observations.

The second type of medical image constraints are closest-point con-
straints (ICP markers”). They are given by known world-coordinate
positions z; € R3,i = 1,...r that have to lie on the surface of the
deformed tet mesh. Locations z; are easier to select in the medical
image than the landmarks because there is no need to give any cor-
respondence. As such, they require little or no medical knowledge,
and can be easily selected in large numbers. We went through the
medical image slices and selected clear representative points on the
organ boundary. We then visually compared the template and the
target shape inferred by the ICP marker cloud. This guided our po-
sitioning of the landmarks, which we place on anatomically “equal”



positions in the template and the medical image. We consulted a
medical doctor to help us interpret medical images, such as iden-
tifying muscles in the scan, clarify ambiguous muscle boundaries,
placing attachments, and disambiguating tendons.

3.2 Plastic deformation gradients

We model shape deformation using plastic deformation gradients,
combined with a (small) amount of elastic deformation. In solid
mechanics, plasticity is the tool to model large shape variations of
objects, making it very suitable for shape deformation with large
strains. Unlike using the elastic energy directly (without plasticity),
plastic deformations have the advantage that they can arbitrarily
and spatially non-uniformly and anisotropically scale the object.
There is also no mathematical requirement that they need to respect
volume preservation constraints. This makes plastic deformations a
powerful tool to model shapes. Our key idea is to find a plastic defor-
mation gradient Fp at each tet of M, such that the FEM equilibrium
shape under Fj and any attachments matches the medical image
observations. Figure 3 illustrates our shape deformation setting. In
order to do so, we need to discuss the elastic energy and forces in
the presence of plastic deformations, which we do next.

Plastic strain is given by a 3 X 3 matrix F;, at each tetrahedron
of M. For each specific deformed shape x € R3", one can define
and compute the deformation gradient F between X and x at each
tet [Miiller and Gross 2004]. The elastic deformation gradient F,
can then be defined as F, = FFi;l [Bargteil et al. 2007] (see Figure 5).
Observe that for any shape x, there exists a corresponding plastic
deformation gradient Fp such that x is the elastic equilibrium under
Fp; namely Fp = F. This means that the space of all plastic deforma-
tion gradients F}, is expressive enough to capture all shapes x. The
elastic energy of a single tet is defined as

& (Fp,x) = V(Ep)y(x, Fp) = V(Ep)y (F(x)F, "), (1)

where V is the rest volume of the tet under the plastic deformation
Fp, and  is the elastic energy density function. We have V = |F,| Vg,
where Vp is the tet’s volume in M, and |Fy| is the determinant of
the matrix Fp. Elastic forces equal fe (Fp,x) = d&(Fp, x)/dx. When
solving our optimization problem to compute F}, in Section 3.4, we
will need the first and second derivatives of &(Fj, x) with respect
to x and Fp,. We provide their complete derivation in Appendix B.
Our method supports any isotropic hyperelastic energy den-
sity function ¢. In our examples, we use the isotropic stable neo-
Hookean elastic energy [Smith et al. 2018], because we found it to
be stable and sufficient for our examples. Note that we do model
anisotropic plastic strains (and this is crucial for our method), so
that our models can stretch by different amounts in different di-
rections. Observe that plastic strains are only determined up to a
rotation. Namely, let Fj, be a plastic strain (we assume det(Fp) > 0;
i.e,, no mesh inversions), and F, = QS be the polar decomposition
where Q is a rotation and S a 3 X 3 symmetric matrix. Then, Fp and
S are the “same” plastic strain: the resulting elastic deformation
gradients differ only by a rotation, and hence, due to isotropy of
Y, produce the same elastic energy and elastic forces. Note that it
is not required that rotations Q match in any way at adjacent tets.
We do not need to even guarantee that F, globally correspond to
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any specific “rest shape”, i.e., the F, are independent of each other
and may be inconsistent. This gives plastic deformation gradient
modeling a lot of flexibility. Hence, it is sufficient to model plastic
strains as symmetric 3 X 3 matrices. We can therefore model Fj, as a
symmetric matrix and parameterize it using a vector s € RS,

S1 S2 83
Fp=|s2 sa s5/. (2)
$3 S5 S¢

We model plasticity globally using a vector s € R%™, where m is the
number of tets in M. We note that Ichim et al. [2017] used such a
6-dimensional parameterization to model facial muscle activations.
In our work, we use it for general large-strain shape modeling. Our
application and optimization energies are different, e.g, Ichim et
al. [2017] causes muscle shapes to follow a prescribed muscle firing
field, and biases principal stretches to be close to 1. Furthermore,
we address the singularities arising with un-attached objects.

3.3 Shape deformation of attached objects

We now formulate our shape deformation problem. We first do so
for attached objects. An object is “attached” if there are sufficient
attachment forces to remove all six rigid degrees of freedom, which
is generally satisfied if there are at least three attached non-colinear
vertices. We find the organ’s shape that matches the attachment and
the medical image constraints by finding a plastic strain F, at each
tet, as well as static equilibrium tet mesh vertex positions x under
the attachments and plastic strain Fj, so that the medical image
observations are met as closely as possible,

argmin  ||Ls||> + a&ni(x) + fEa(x), 3)
S, X
subject to:  fe (Fp(s),x) +fa(x) =0, (4)

where @ > 0and f > 0 are scalar trade-off weights, and L is the plas-
tic strain Laplacian. We define L as essentially the tet-mesh Laplacian
operator on the tets, 6-expanded to be able to operate on entries of
s at each tet (precise definition is in Appendix A). The Laplacian
term enforces the smoothness of Fp, ie, Fpin adjacent tets should
be similar to each other. The second equation enforces the elastic
equilibrium of the model under plastic strains Fp and under the
attachment forces f;. Attachments pull a material point embedded
into a tet to a fixed world-coordinate location using spring forces;
precise definitions of the attachment energy &, and attachment
forces f, are in Appendix F. It is important to emphasize that our
output shapes are always in static equilibrium under the plastic
strains Fp, and both this equilibrium shape x and F}, are optimized
together; this is the key aspect of our work. The first equation con-
tains the smoothness and the medical image (MI) observations; we
discuss the rationale for using the attachment energy &, in Equa-
tion 3 in the next paragraph. The medical image energy measures
how closely x matches the medical image constraints,

9 r
Emi(x) = Z [1Sx — y;l|? + Z l|z; — closestPoint(x, z;)||%,  (5)
i=1 i=1
where S is the interpolation matrix that selects Y;, namely Sx = Y.
The function closestPoint(x, z;) € R computes the closest point to
z; € R3 on the surface of the tet mesh with vertex positions x.
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Fig. 4. Comparison to augmented deformation transfer. The beam’s attachments (red) cause the beam to bend, whereas the ICP markers (blue) cause it
to stretch 2x in one of the two transverse directions. Our method can easily recover such a shape deformation, whereas deformation transfer [Sumner and

Popovi¢ 2004] cannot, even if augmented with an elastic energy.
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Fig. 5. Plastic and elastic deformation gradient for a single tet.

Our treatment of attachments in Equations 3 and 4 deserves a spe-
cial notice. Equation 4 is consistent with our setup: we are trying to
explain the medical images by saying that the organ has undergone
a plastic deformation due to the variation between the template and
captured individual. The shape observed in the medical image is
due to this plastic deformation and the attachments. We formulate
attachment forces in Equation 4 as a “soft” constraint, i.e., f(x)
is modeled as (relatively stiff) springs pulling the attached organ
points to their position on the external object. This soft constraint
could in principle be replaced for a hard constraint where the at-
tached positions are enforced exactly. We use soft constraints in
our examples because they provide additional control to balance
attachments against medical image landmarks and ICP markers.
These inputs are always somewhat inconsistent because it is impos-
sible to place them at perfectly correct anatomical locations, due
to medical imaging errors. Hence, it is useful to have some leeway
in adjusting the trade-off between satisfying each constraint type.
With soft constraints, it is important to keep the spring coefficient
in f; (x) high so that constraints are met very closely (under 0.5 mm
error in our examples). We were able to do this using some small
amount of spring coefficient tuning.

As per the attachment energy &,, we initially tried solving the
optimization problem of Equations 3 and 4 without it. This seems
natural, but actually did not work. Namely, without &,, there is
nothing in Equations 3 and 4 that forces the plastic strains to rea-
sonable values. The optimizer is free to set F}, to arbitrarily extreme
values, and then find a static equilibrium x under the attachment
forces. In our outputs, we would see smooth nearly tet-collapsing
plastic strains that result in a static equilibrium x whereby the med-
ical image constraints were nearly perfectly satisfied. Obviously,
this is not a desired outcome. Our first idea was to add a term that
penalizes the elastic energy & (Fp,x) to Equation 3. Although this
worked in simple cases, it makes the expression in Equation 3 gen-
erally nonlinear. Instead, we opted for a simpler and more easily
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computable alternative, namely add the elastic spring energy of all
attachments, &,. This keeps the expression in Equation 3 quadratic
in x and Fp, which we exploit in Section 3.4 for speed. Observe that
&Ea behaves similarly to the elastic energy: if the plastic strain causes
a rest shape that is far from the attachment targets, then both &,
and the elastic energy will need to “work” to bring the shape x to its
target attachments. Similarly, if the plastic strain already did most
of the work and brought the organ close to its target, then neither
&, nor the elastic energy will need to activate much.

Because our units are meters and we aim to satisfy constraints
closely, we typically use weights close to @ = 10? and = 10% in
our examples. The weights « and f permit adjusting the trade-off
between three desiderata: make plastic strains smooth, meet medical
image observations, and avoid using too much elastic energy (i.e.,
prefer to resolve shapes with plastic strains).

Finally, we note that our formulation is different to approaches
that optimize the deformation gradient F directly (i.e., without an
intermediary quantity such as the plastic deformation gradient). In
Figures 4 and 7, we compare to two such approaches: deformation
transfer [Sumner and Popovi¢ 2004] and variational shape model-
ing [Botsch and Kobbelt 2004]. We demonstrate that our method
better captures shapes defined using our inputs (landmarks, ICP
markers, large spatially varying strains). Among all compared ap-
proaches, the variational method in Figure 7 came closest to meeting
our constraints, but there is still a visual difference to our method.
We provide a further comparison to variational methods in Sec-
tion 4.5.

3.4 Solving the optimization problem for attached objects

We adapt the Gauss-Newton method [Sifakis et al. 2005] to efficiently
solve the optimization problem of Equations 3 and 4 (example output
shown in Figure 6). Although the Gauss-Newton method is com-
monly used to solve nonlinear optimization problems, the dimension
of our optimization space is several hundred thousands; contrast
this to recent related work in computer graphics [Miguel et al. 2012;
Sifakis et al. 2005] where the dimension is usually less than 50. In our
case, a direct application of the Gauss-Newton method will result in
large dense matrices that are costly to compute and store, causing
the method to fail on complex examples. Below, we demonstrate
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Fig. 6. 17 muscles of the human hand extracted from MRI. Observe that the template hand is bigger than the scanned hand. Pose is also different. Our

method solves this using bone attachments.
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Fig. 7. Comparison to variational shape modeling. In a variational
method [Botsch and Kobbelt 2004], the wiggles increase if one imposes
a stricter constraint satisfaction. First row: under a small number of land-
marks, variational methods with k = 2, 3 produce a smooth and reasonable
result, albeit somewhat smoothening the rest shape. Middle row: under
more landmarks, it becomes more difficult for variational methods to meet
the landmarks while avoiding the wiggles. Bottom row: variational methods
produce wavy results. Our method meets the landmarks and produces fewer
wiggles. This is because the plastic deformation field can arbitrarily rotate
and non-uniformly scale to adapt to the inputs; the elastic energy then
finally irons out the kinks.

how to avoid these issues, producing a robust method capable of han-
dling geometrically complex examples involving complex spatially
varying plastic strains. Before settling on our specific Gauss-Newton

approach, we attempted to use the interior-point optimizer available
in the state-of-the-art Knitro optimization library [Artelys 2019].
This did not work well because our problem is highly nonlinear.
The interior-point method (IPM) worked well on simple examples,
but was slow and not convergent on complex examples. IPM fails
because it requires the constraint Hessian, which is not easily avail-
able (because it involves the third derivative of the elastic energy).
When we approximated it, IPM generated intermediate states too far
from the constraints, and failed. The strength of our Gauss-Newton
approach is that we only need constraint gradients. Our method
inherits the convergence properties of the Gauss-Newton method.
While not guaranteed to be locally convergent, Gauss-Newton is
widely used because its convergence can approach quadratic when
close to the solution.

We note that our method is designed for sparse medical image
landmarks and ICP markers. In Figure 8, we give a comparison to a
related method from medical imaging which used an elastic energy,
but with dense correspondences. Our method can produce a quality
shape even under sparse inputs, and can consequently work even
with coarser MRI scans (such as our hip bone example; Figure 13).
The ability to work with sparse markers also translates to lower
manual processing time to select the markers in the medical image.

Because the object is attached, Equation 4 implicitly defines x
as a function of s. The Gauss-Newton method uses the Jacobian
J = dx/ds, which models the change in the static equilibrium x as
one changes the plastic deformation gradient. It eventually relies on
the derivative of elastic forces with respect to the plastic deformation
gradient, which we give in Appendix B. Although closestPoint(x, z;)
is a nonlinear function of x, we can treat the barycentric coordinates
of the closest point to z; as fixed during one ICP iteration, and there-
fore closestPoint(x, z;) becomes a linear function of x. Therefore,
Emi(x) can be seen as a quadratic function of x, and so is E,(x).
We can thus rewrite Equations 3 and 4 as

1 q+r+t c
argmin ~|[Ls|[? + > =E[|Agx + byll%, ©)
xs 2 2
k=1
st fhet(s,x) =0, (7)

where fret(s, x) = (Fp (s), ) + £, (x) is the net force on the mesh,
and constant matrices, vectors and scalars Ay, by, ¢i are indepen-

dent of s and x (we give them in Appendix F). The integer t denotes
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3,547 markers 1,867 markers 944 markers 475 markers 236 markers 99 markers 99 markers
(all vertices) (~1/2 # vertices) (~1/4 # vertices) (~1/8 # vertices) (~1/16 # vertices) (~1/32 # vertices)
[Niculescu et al 2009] our method

Fig. 8. Elastic energy methods only work with dense markers. In this figure, we compare to a state-of-the art medical imaging technique [Niculescu
et al. 2009], whereby the output shape is calculated by minimizing an elastic energy of a template shape, subject to dense medical image markers. With dense

markers, elastic energy methods work well (left). As the constraints sparsify, elastic energy produces artefacts (middle). Our plasticity method (right) produces

a good shape even with sparse markers.

the number of attachments. We now re-write Equations 6 and 7 so
that the plastic strains are expressed as s + As, and the equilibrium
x as X + Ax, where Ax = JAs. At iteration i of our Gauss-Newton
method, given the previous iterates x’ and s, we minimize a non-
linearly constrained problem,

q+r+t
1 . . . )
argmin - |IL(s' + As) 2+ > E[Ag(x +JAs") + bil2, (8)
Xi+1,ASi 2 k=1 2
st fet(s’ + As', x*1) = 0. )

After each iteration, we update s’*! = s’ + As’. Observe that Equa-
tion 8 does not depend on x'*1, and that the constraint of Equation 9
is already differentially “baked” into Equation 8 via Ax = JAs. We
therefore first minimize Equation 8 for Ast, using unconstrained
minimization; call the solution As. A naive minimization requires
solving a large dense linear system of equations, which we avoid us-
ing the technique presented at the end of this section. We regularize
As' so that the corresponding F,, is always positive-definite for each
tet; we do this by performing eigen-decomposition of the symmetric
matrix Fj, at each tet, and clamping any negative eigenvalues to
a small positive value (we use 0.01). Our method typically did not
need to perform clamping in practice, and in fact such clamping is
usually a sign that the method is numerically diverging, and should
be restarted with better parameter values.

We then minimize the optimization problem of Equations 8 and 9
using a 1D line search, using the search direction Asi. Specifically,
for n > 0, we first solve Equation 7 with s() := s’ + nAs! for
x = x(n) using the Knitro library [Artelys 2019]. Direct solutions
using a Newton-Raphson solver also worked, but we found Knitro
to be faster. We then evaluate the objective of Equation 6 at x = x(1)
and s = s(n7). We perform the 1D line search for the optimal 7 using
the gradient-free 1D Brent’s method [Press et al. 2007].

Initial guess: We solve our optimization problem by first assuming
a constant s at each tet, starting from the template mesh as the
initial guess. This roughly positions, rotates and globally scales the
template mesh to match the medical image. We use the output as
the initial guess for our full optimization as described above.
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Fig.9. Convergence plots. X-axis are iterations, and Y-axis is the optimiza-
tion energy. The initial optimization energies are normalized to 1.0.

Optimization stages and stopping criteria: We first do the opti-
mization with attachments only. Upon convergence, we add the
landmarks, ignoring any ICP markers. This is because initially, the
mesh is far away from the target and the ICP closest locations are
unreliable. After convergence, we disable the landmarks and enable
the ICP markers and continue optimizing. After this optimization
meets a stopping criterium, we are done. Our output is therefore
computed with ICP markers only; landmarks only serve to guide
the optimizer. This is because landmarks require a correct corre-
spondence, and it is harder to mark this correspondence reliably in
the scan than to simply select an ICP marker on the boundary of
an organ. We recompute the closest locations to ICP markers after
each Gauss-Newton iteration. We stop the optimization if either of
the following three criteria is satisfied: (i) reached the user-specified
maximal number of iterations (typically 20; but was as high as 80 in
the liver example), (i) maximum error at ICP markers is less than
a user-specified value (1mm for hand muscles), (iii) the progress
in each iteration is too small, determined by checking if 7 is under



a user-defined threshold (we use 0.01). Figure 9 shows the conver-
gence of our optimization.

Avoiding dense large linear systems. Because the object is attached,
% is square and invertible. Therefore, one can obtain a formula

for J by differentiating Equation 7 with respect to s,
Jz_(%)_1% (10)
0x ds
The matrix J is dense (dimensions 3n X 6m). Observe that because
Equation 8 is quadratic in As’, minimizing it as done above to de-
termine the search direction As! is equivalent to solving a linear
system with the system matrix H, where H is the second derivative
(Hessian matrix; dimension 6m X 6m) of Equation 8 with respect
to As’. Because ] is dense, H is likewise a dense matrix,

H =12 +JT(Z kAL Ay)] =12 +Z7Z,  where (1)
k

Ve1Aq
\c2Az

Ve1Aq
VezAz ( Of et )_1 Ofnet

7z =
ox Jds

\/mAq+r+t \/mAq+r+t

(12)
Therefore, when the number of tet mesh elements m is large, it is
not practically possible to compute H, store it explicitly in mem-
ory or solve linear systems with it. To avoid this problem, we first
tried solving the system of equations using the Conjugate Gradient
(CG) method. This worked, but was very slow (Table 1). The matrix
Z € R3(a+r+1)X6m js dense. In our complex examples, the number
of medical image constraints q + r + t is small (typically 10 - 800)
compared to the dimension of s (6m; typically ~200,000). Our idea
is to efficiently compute the solution to a system Hy = h for any
right-hand side h using the Woodbury matrix identity [Woodbury
1950], where we view L? as a “base” matrix and ZT Z a low-rank
perturbation. Before we can apply Woodbury’s identity, we need
to ensure that the base matrix is invertible. As we prove in Appen-
dix A, the plastic strain Laplacian L is singular with six orthonormal
vectors ¥; in its nullspace (assuming that M is connected). Each
¥4 is a vector of all ones in component i of s, i = 1,...,6 and all
zeros elsewhere, divided by y/m for normalization. It follows from
the Singular Lemma (i) (Section 3.5) that L? is also singular with the
same nullspace vectors. Therefore, we decompose

H= (LZ - 26: l//iwiT) + (ZTZ + 26: w//iT) =B+272, (13)
i=1 i=1

where B = L2 — Z?zl YiviT and Z is matrix Z with an additional
added 6 added rows l//iT. By the Singular Lemma (iii) (Section 3.5),
B is now invertible, and we can use Woodbury’s identity to solve

y=Hlh= (B—l -B1ZT (1+ ZB_IZT)_l ZB_I)h. (14)

We rapidly compute Z, without ever computing or forming J, by

solving sparse systems 6{5‘;:‘ Zr = —\/kAK !, and z; = EIZ%, for
k=1,...,(q+r+1), where z; € R¥®™ s the k-th 3-row block of
Z. Observe that this sparse system matrix is symmetric and the same

for all k. We factor it once using the Pardiso solver and then solve the
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Table 1. Solving a single linear system of equations with H, using the
conjugate gradients and our method. The naive direct solver failed in all
cases. Note that H is a dense 6m X 6m matrix. The column t,,¢p gives a
common pre-processing time for both CG and our method.

Example ‘ 6m 3(g+r+t) ‘ torep ‘ CG Ours
Hand muscle | 237,954 1,143 17.5s | 897.5s 9.5s
Hip bone 172,440 1,497 11.4s | 408.9s 7.2s
Liver 259,326 1,272 24.4s | 1486.7s 10.0s

multiple right-hand sides in parallel. Once 2,{ has been computed,

Zp = 2,{ 63;“ is easy to compute because it is a multiplication of a

thin dense matrix and a sparse matrix. The matrix B is constant, and
we only need to factor it once for the entire optimization. Finally, the
matrix [ + ZB~12T e R3(a+7+1)x3(q+r+1) js small, and so inverting
it is fast. We analyze the performance of our algorithm in Table 1.

3.5 Singular lemma

In this paper, there are two occasions where we have to solve a
singular sparse linear system with known nullspace vectors. Such
systems occur often in modeling of un-attached objects, e.g., finding
static equilibria, solving Laplace equations on the object’s mesh,
animating with rotation-strain coordinates [Huang et al. 2011], or
computing modal derivatives [Barbi¢ and James 2005]. Previous
work solved such systems ad-hoc, and the underlying theory has
not been stated or developed in any great detail; or it only addressed
non-singular systems. For example, in order to constrain vertices
in cloth simulation, Boxerman [2003] modified the linear system
Ax = b to SAx = Sb, for a properly chosen filtering matrix S.
However, A is non-singular to begin with; there is no discussion of
singularity in Boxerman’s work.

We hereby state and prove a lemma that comprehensively sur-
veys the common situations arising with singular systems in com-
puter animation and simulation, and back the lemma with a math-
ematical proof (Appendix C). Recall that the nullspace of a matrix
A € RP*P is N(A) = {x € R? ; Ax = 0}, and the range of A is
R(A) = {Ax; x € RP}. Both are linear vector subspaces of R?.

Singular Lemma: Let the square sym-
metric matrix A € RP*P be singu-
lar with a known nullspace spanned
by k linearly independent vectors
Y1,..., Y. Then the following state-
ments hold:

(i) N (A) and R(A) are orthogonal. Ev-
ery vector x € RP can be uniquely ex-
pressed asx=n+r, where n € N(A) Fig. 10. Illustration of the
and r € R(A). Vector r is orthogonal to ~ Singular Lemma.
nandto ¢; foralli =1,...,k (Figure 10).

(ii) Let b € R(A). Then, the singular system Ax = b has a unique
solution x with the property that x is orthogonal to ¥; for all
i =1,...,k. This solution can be found by solving the non-singular
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linear system

A i Vil [ x b

I o ..o ofln 0

. . =11 (15)
yloo 0]l Lo

All other solutions equal x + Zle piy; for some scalars p; € R.
(iii) For any scalars a; # 0, the matrix B = A + Zé‘zl (Xil//ﬂ//iT is
invertible. If /; are orthonormal vectors, then the solution to By = h
koA
i=1 a;
tion 15 with b = projgayh = h— X (¥ h)y:. We give the proof
of the singular lemma in Appendix C.

equalsy = x + i, where x and A; are solutions to Equa-

3.6 Un-attached objects

The difficulty with un-attached objects is that we now have fyer = fe,
and the equation f (Fp (s), X) = 0 no longer has a unique solution x
for a fixed plastic state s. This can be intuitively easily understood:
one can arbitrarily translate and rotate any elastic equilibrium shape
x under the given plastic state s; doing so produces another elastic
equilibrium shape. The space of solutions x is 6-dimensional. This
means that we can no longer uniquely solve Equation 7 for x during
our line search of Section 3.4. Furthermore, the square tangent
stiffness matrix

Ofe (Fp(s). x)

o (16)

K(Fp(s), x) =

is no longer full rank. In order to address this, we now state and
prove the following Nullspace Lemma.

Nullspace Lemma: The nullspace of the tangent stiffness matrix
of an elastoplastic deformable object in static equilibrium x under
plasticity, is 6-dimensional. The six nullspace vectors are i; :=
[ei,ei, ..., ei], where e; € R3 is the i-th standard basis vector, and
Yayi = [ei X x1,€; X x2,...,€; Xxp],fori=1,2,3.

To the best of our knowledge, this fact of elasto-plasto-statics
has not been stated or proven in prior work. It is very useful when
modeling large-deformation elastoplasticity, as real objects are often
un-attached, or attachments cannot be easily modeled. We give a
proof in Appendix D. To accommodate un-attached objects, it is
therefore necessary to stabilize the translation and rotation. For
translations, this could be achieved easily by fixing the position of
any chosen vertex. Matters are not so easy for rotations, however.
Our idea is to constrain the centroid of all tet mesh vertices to a
specific given position ¢, and to constrain the “average rotation” of
the model to a specific given rotation R. We achieve this using the
familiar “shape-matching” [Miiller et al. 2005], by imposing that the
rotation in the polar decomposition of the global covariance matrix
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must be R. We therefore solve the following optimization problem,

argmin ||L sl)? + a&pi(x) (17)
x,8, R, t
s.t. fe(Fp(s),x) =0, (18)
Z wixj | — Z wiXj =1t, (19)
Jj€D jeD
T
Polar Z wj(xj - t) (Xj - (Z Wka)) =R, (20)
jeD keD

where D is the set of points on the mesh surface where we have ei-
ther a landmark or an ICP constraint, wj is the weight of a point, X;
is the position of vertex j in M and Polar(F) is the polar decomposi-
tion function that extracts the rotational part of a matrix F. We set
all weights equal, i.e., w; = 1/|D|. We choose the set D as opposed
to all mesh vertices so that we can easily perform optimization with
respect to R and t (next paragraph). We assume that our argument
matrices F to Polar are not inversions, i.e., det(F) > 0, which es-
tablishes that Polar(F) is always a rotation and not a mirror. This
requirement was easily satisfied in our examples, and is essentially
determined by the medical imaging constraints; the case det(F) < 0
would correspond to an inverted (or mirror) medical image, which
we exclude.

We solve the optimization problem of Equations 17, 18, 19 and 20
using a block-coordinate descent, by iteratively optimizing x, s while
keeping R, t fixed and vice-versa (Figure 11, 12). Rigid transforma-
tions do not affect smoothness of s so we do not need to consider
it when optimizing R, t. We need to perform two modifications to
our Gauss-Newton iteration of Section 3.4. The first modification
is that we need to simultaneously solve Equations 18, 19 and 20
when determining the static equilibrium in the current plastic state
s. As with attached objects, we do this using the Knitro optimizer. In
order to do this, we need to compute the first and second derivatives
of the stabilization constraints in Equations 19 and 20 (Section 3.7).
The second modification is needed because the tangent stiffness ma-
trix K(Fp(s), x), as explained above, is now singular with a known
6-dimensional nullspace. In order to compute the Jacobian matrix
J using Equation 10, we use our Singular Lemma (ii) (Section 3.5).
Note that the right-hand side is automatically in the range of K be-
cause Equation 10 was obtained by differentiating a valid equation,
hence Equation 10 must also be consistent.

3.7 Gradient and Hessian of Polar(F)

Previous work computed first and second-order time derivatives of
the rotation matrix in polar decomposition [Barbi¢ and Zhao 2011],
or first derivative with respect to each individual entry of F [Chao
et al. 2010; Twigg and Kac¢i¢-Alesi¢ 2010]. In our work, we need the
first and second derivatives of R with respect to each individual
entry of F. We found an elegant approach to compute them using
Sylvester’s equation, as follows. Observe that Polar(F) = FS71,
where S is the symmetric matrix in the polar decomposition. Because
det(F) > 0, S is positive-definite and uniquely defined as S = VFTF.
To compute the first-order derivatives, we start from F = RS, and
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Fig. 11. Un-attached optimization of a hip bone shape to a CT scan. The scanned bone is smaller and has a substantially different shape to the template.

Template liver

Liver reshaped to match CT scan

Superimposed, view 1
(green=ours)

Superimposed, view 2
(green=ours)

Fig. 12. Un-attached optimization of a liver shape to a CT scan. Our method successfully captures the large shape variation between the template and
the scan. This figure also demonstrates that our method makes it possible to transfer the rendering textures and uv coordinates from the template onto the

output.
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Fig. 13. Attached optimization of a hip muscle (gluteus medius) to a MRI scan. Our method successfully captures the large shape variation between

the template and the scan.

differentiate,
OF OR oS OR OF oS
— =—S+R—. h — =|=—=-R—|s!, @
dOF;  OF; * OF;’ ence OF; (BFI' 6Fl-) > 21)

Therefore, we need to compute dS/dF;. We have

OFTF 05 as

—— = —=S5+S5S—, 22
0F; OF; JF; 22)

i.e., this is the classic Sylvester equation for the unknown matrix

g—fi [Sylvester 1884]. The Sylvester equation AX + XB = C can be

solved as

FTF=5%  andthus

-1

(BT EBA) vec(X) = vec(C), (23)
where & is the Kronecker sum of two matrices. In our case,
T

aS OF'F
vec(a—Fi) = (5@ S)™ vec( 3, ). (24)
The computation of second-order derivatives follows the same
recipe: differentiate the polar decomposition and solve a Sylvester
equation. We give it in Appendix E.

We can now compute the gradient and Hessian of our stabiliza-
tion constraints. The translational constraint is linear in x and can
be expressed as Wix — d; = 0, where W is a 3 X 3n sparse matrix.
Although Polar is not linear, the argument of Polar is linear in x. The
rotational constraint can be expressed as Polar (Wox — dp) — R = 0,
where W, is a 9 X 3n sparse matrix. The Jacobian of the transla-
tional constraint is Wi, and the Hessian is zero. For the rotational
constraint, the Jacobian is %: W, € RP3" and the Hessian is

(WT . O°R.

ot Gpz W) € R?3mMX31 where : denotes tensor contraction.

3.8 Comparison to standard shape deformation methods

Our shape deformation setup is similar to standard shape deforma-
tion problems in computer graphics. In fact, we first attempted to
solve the shape deformation problem with as-rigid-as-possible en-
ergy (ARAP) [Sorkine and Alexa 2007], bounded biharmonic weights
(BBW) [Jacobson et al. 2011], biharmonic weights with linear preci-
sion (LBW) [Wang et al. 2015a], and a Finite Element Method static
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template our method LBW BBW ARAP FEM

Fig. 14. Standard volume-based shape deformation methods result
in wiggly and spiky artefacts. The shown hand Palmar interossei muscle
has a tendon on one side and no tendon on the other; both ends are attached
to a bone (light blue). Definitions of the acronyms are in Section 3.8. The
MRI landmark constraints are shown in dark blue. The shape deformation
between the template muscle and the shape in MRI consists of large and
spatially varying stretches. Our method successfully models this deforma-
tion. We note that spikes cannot be avoided by using, say, a spherical region
for the constraints as opposed to a point; the non-smoothness just moves

to the spherical region boundary.

volume-based ARAP

surface-based volume-based
ARAP ARAP

ours (blue dots: markers)

Fig. 15. Comparison between a surface energy and volumetric en-
ergy. In both examples (bunny and hand), we performed non-rigid iterative
closest point alignment between a template triangle mesh, and a collection
of target ICP markers (13 for bunny and 456 for the hand). For the bunny,
we manually placed the markers to greatly enlarge bunny’s left ear. For the
hand, we placed the markers on a pre-existing target hand surface mesh
that has different geometric proportions and mesh topology as the template.
Template is a man and target is a woman. We then solved the ICP problem
using the surface-based ARAP energy, volume-based ARAP energy and
our volumetric plastic strains. Our method produces smooth artefact-free
outputs.

solver (FEM) [Barbi¢ et al. 2009]. Unfortunately, none of the meth-
ods worked well. Figures 14 and 15 demonstrate that these methods
produce non-smooth shapes with spikes (ARAP, BBW, FEM), or
wiggles (LBW).

Mathematically, the reason for the spikes in ARAP, BBW and FEM
is that point constraints for second-order methods are inherently
flawed. As one refines the solution by adding more tetrahedra, the
solution approaches a spiky point function at each point constraint,
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Fig. 16. Output ICP error histograms. Each medical image marker con-

tributes 1entry to the histogram. The hand muscles histogram is a combined
histogram for all the 17 hand muscles.

which is obviously not desirable. This mathematical issue is exposed
in our work because our shape deformation consists of large spatially
varying stretches. Often, the template mesh needs to be stretched
~2x or more along some (or several) coordinate axes. The medical
image constraints are distributed all around the muscle, pulling in
different directions and essentially requesting the object to undergo
a spatially non-uniform and anisotropic scale. This exacerbates the
spikiness for second-order methods. We note that these problems
cannot be avoided simply by using an elastic energy that permits
volume growth. Namely, Drucker’s stability condition [Drucker
1957] requires a monotonic elastic energy increase with increase in
strain. An elastic energy therefore must penalize strain increases if
it is to be stable; and this impedes large-strain modeling in methods
that rely purely on an elastic energy. Our plasticity method does
not penalize large strains and thus avoids this problem. Spikes can
be avoided by using a higher-order variational method such as
LBW. However, our experiments indicate that such methods suffer
from wiggles when applied to medical imaging problems (see also
Figures 7 and 23).

4 RESULTS

We extracted muscles of the human hand and the hip muscle from
an MRI scan, and a hip bone and a liver from a CT scan. We analyze
the performance of our method in Table 2. In Figure 16, we give his-
tograms of the magnitude of the difference between the positions of
the medical image markers and their output positions. It can be seen
that our method produces shapes that generally match the medical
image constraints to 0.5mm or better. In Figure 17, we demonstrate
that the output quality of our tetrahedra is still good; if needed,
this could be further improved by re-meshing [Bargteil et al. 2007].
Figures 18 and 19 superimpose our output meshes on the CT and
MRI scans, respectively. In Figure 20, we compare to a recent im-
plicit point set surface reconstruction method [Huang et al. 2019]. In
Figure 21, we evaluate our method in the presence of known ground
truth plastic deformation gradients. Figures 22, 24, 25, 26 provide
comparisons to surface-based methods, in addition to Figures 7,15. In
all comparisons, our method outperformed surface-based methods.
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Table 2. The statistics for our examples: #vtx=number of vertices; #ele = number of tetrahedra in M; #iter=number of ICP iterations; “time”=total
computation time to compute the output shape; “attached” means whether the object is attached or not; ejnit = error between our template mesh and the
ICP constraints; efn,) = error between our result and the ICP markers. The first and second reported error numbers are the average and maximum error,

» o«

respectively. In the hand example, there are 17 groups of muscles; “min”, “med” and “max” refers to the smallest, representative median and largest muscle
group; “max-m” is the example with the largest number of ICP constraints. Observe that our markers are sparse; the ratio between the number of markers and

the number of vertices is 0.3%-7.3% in our examples.

Example #vtx  #ele #markers | #iter time [min] | attached ejnit[mm]  egna[mm]
Hand muscle (min) 4,912 20,630 15 8 14.2 yes 0.53/2.22 0.06/0.14
Hand muscle (med) 6,260 31,737 32 12 12.8 yes 0.62/1.56  0.11/0.55
Hand muscle (max) 8,951 42,969 96 11 14.2 yes 3.35/12.82 0.11/0.34
Hand muscle (max-m) | 7,552 34,966 151 18 20.3 yes 3.28/9.11  0.16/0.47
Hip muscle (Fig 13) 6,793 34,118 82 21 28.3 yes 7.41/21.27 0.39/1.85
Hip bone 6,796 28,740 499 34 49.2 no 4.12/14.27 0.25/1.30
Liver 11,392 43,221 424 80 128.3 no 9.00/33.68 0.21/4.81
Hand surface (Fig 15) | 11,829 49,751 456 31 43.8 no 4.87/16.78 0.07/0.86

Min dihedral angle [degree]
Hand muscles Liver

1400

Min dihedral angle [degree]

Hip bone

Min dihedral angle [degree]

Hip muscle

Fig. 17. Minimum tetrahedral dihedral angles before and after our
optimization. It can be seen that the output angles are still relatively large.
As expected, the output angles are somewhat worse than the initial ones,
as the object has undergone a plastic deformation.

4.1 Hand muscles

In our muscle hand example, we extracted 17 hand muscles from an
MRI scan (Figure 6). We obtained the scan and the already extracted
bone meshes from [Wang et al. 2019]; scan resolution is 0.5mm x
0.5mm x 0.5mm . We considered two “templates”, the first one from
the Centre for Anatomy and Human Identification at the University
of Dundee, Scotland [2019], and the second one from Zygote [Zygote
2016]. We used the first one (Figure 6, left) because we found it to be
more medically accurate (muscles insert to correct bones). Muscle
anatomy of a human hand is challenging (Figure 6). We model all
muscle groups of the hand, namely the thenar eminence (thumb),
hypothenar eminence (below little finger), interossei muscles (pal-
mar and dorsal) (between metacarpal bones), adductor pollicis (soft
tissue next to the thumb, actuating thumb motion), and lumbricals
(on the side of the fingers at the fingers base). Our template models
the correct number and general location of the muscles, but there
are large muscle shape differences between the template subject
and the scanned subject (Figure 1). We solve the optimization prob-
lem of Equations 3 and 4 separately for each muscle, starting from

the template mesh as the initial guess. In our results, this produces
muscles that match the attachments and medical image constraints
markers at 0.5 mm or better, which is at, or better than, the accuracy
of the MRI scanner.

4.1.1  Marking the muscles in MRI scans. During pre-processing, we
manually mark as many reliable points as possible on the boundary
of each muscle (~ 10 — 20 landmarks and ~ 50 — 100 ICP markers
per muscle) in the MRI scans. This process took approximately 5
minutes per muscle.

4.1.2  Attachments to bones. The template muscles are modeled
as triangle meshes. We build a tetrahedral mesh for each muscle.
Our tet meshes conform to the muscle’s surface triangle mesh; this
requirement could be relaxed. For each muscle in the template, we
attach its tet mesh to the bones using soft constraints. We do this
by marking where on one or multiple bones this muscle inserts;
to do so, we consulted a medical doctor with specific expertise
in anatomy. For each bone triangle mesh vertex that participates
in the insertion, we determine the material coordinates (i.e., tet
barycentric coordinates) in the closest muscle tet. We then form a
soft constraint whereby this muscle material point is linked to the
bone vertex position using a spring.

4.1.3  Direct attempt using segmentation: We note that we have also
attempted to model the muscle shapes directly using segmentation,
simply from an MRI scan. Recent work has demonstrated that this
can be done for hand bones [Wang et al. 2019], and we attempted
a similar segmentation approach for muscles. However, given that
the muscles touch each other in many places (unlike bones), the
contrast in the MRI scan was simply not sufficient to discern the
individual muscles. Our conclusion is that a segmentation approach
is not feasible for hand muscles, and one must use a pre-existing
anatomically accurate template as in our work.

4.1.4  Removing inter-penetrations of muscles. Many hand muscles
are in close proximity to one another and several are in continuous
contact. One strategy to resolve contact would be to incorporate con-
tact into our optimization (Equations 3 and 4). This approach is not
very practical, as unilateral constraints are very difficult to optimize.
Furthermore, such an approach couples all (or most) muscles, and
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liver (CT scan)

% 5

hip muscle (MRl scan)
Fig. 18. Our extracted organs match the medical image. The intersec-
tion of the output mesh with the medical image slices is shown in green.

requires one to solve an optimization problem with a much larger
number of degrees of freedom. It is extremely slow at our resolu-
tion; it overpowers our machine. Instead, we optimize each muscle
separately. Of course, the different muscles inter-penetrate each
other, which we resolve as follows. For each muscle, we already po-
sitioned the MRI constraints so that they are at the muscle boundary.
Therefore, observe that if our marker positioning and the solution
to the optimization problem were perfect, inter-penetration would
be minimal or non-existent. The marker placement is relatively
straightforward at the boundary between a muscle and another
tissue (bone, fat, etc.) due to good contrast. However, placing mark-
ers at the boundary between two continuously colliding muscles
is less precise, due to a lower MRI contrast between adjacent mus-
cles. This is the main cause of the inter-penetrations. We remove
inter-penetrations with FEM simulation because it produces smooth

, Vol. 1, No. 1, Article . Publication date: January 2021.

interpenetrations resolved

Fig. 19. Interpenetration removal. The yellow lines are muscle cross-
sections in this representative MRI slice of the hand. It can be seen that our
interpenetration removal method successfully removes penetrations, with-
out modifying the interpenetration-free sections of the muscles’ boundary.

organic shape changes; alternatively, one could use geometric ap-
proaches [Schmid et al. 2009]. Specifically in our work, for a pair of
inter-penetrating muscles, we run collision detection to determine
the set of triangles of each muscle that are inside the volume of
the other muscle. On each muscle, we then determine the set of
tetrahedra that are adjacent to the collision area. We then slightly
enlarge this set, by including any tet within a 5-ring of tets. We then
run a FEM contact simulation just on these two tetrahedral sets on
the two muscles. FEM simulation pushes the muscle surface bound-
aries apart, without displacing the rest of the muscle (Figure 19). We
handle contact islands of multiple muscles by running the above
procedure on two muscles, then for a third muscle against the first
two muscles, then the fourth against the first three, and so on. Al-
though in principle this procedure is order-dependent, the input
penetrations were shallow in our examples, making the procedure
relatively unaffected by the processing order.

4.2 Hip bone

In our second anatomical example (Figure 11), we apply our method
to a CT scan of the human hip bone (pelvis). We obtained the tem-
plate from the human anatomy model of Ziva Dynamics [Ziva Dy-
namics 2019], and the CT scan from the “KidneyFullBody” medical
image repository [Stephcavs 2019]. The template and the scanned
hip bone differ substantially in shape, and this is successfully cap-
tured by our method.

4.3 Liver

In our third anatomical example, we apply our method to a CT
scan of the human liver (Figure 12). We purchased a textured liver
triangle mesh on TurboSquid [Turbosquid 2019]. We subdivided it
and created a tet mesh using TetGen [Hang Si 2011]. This serves as
our “template”. We used a liver CT scan from the “CHAOS” medical



image repository [Kavur et al. 2019]. We then executed our method
to reshape the template tet mesh to match the CT scan. Much like
with the hip bone, our method successfully models large differences
between the template and the scanned liver. Finally, we embedded
the TurboSquid triangle mesh into the template tet mesh, and trans-
formed it with the shape deformation of the tet mesh. This produced
a textured liver mesh (Figure 12) that matches the CT scan.

4.4 Hip muscle

In our fourth anatomical example, we apply our method to a MRI
scan of a female human hip muscle (gluteus medius) (Figure 13). We
obtained the data from The Cancer Imaging Archive (TCIA) [Clark
et al. 2013]. The image resolution is 384 X 384 X 240 with voxel spac-
ing of 1mm, which is 2x coarser to the hand MRI dataset. We use
the template mesh from the human anatomy model of Ziva Dynam-
ics [Ziva Dynamics 2019]. We subdivided it and created a tet mesh
for it using TetGen [Hang Si 2011]. Because the muscle is attached
to the hip bone and the leg bone, we needed to first extract the bones
from the MRI scan; we followed the method described in [Wang
et al. 2019]. Note that the subject in the Ziva Dynamics template is
male. The template and the scanned hip muscle differ substantially
in shape, and this is successfully captured by our method.

A

~ (2) Our method (b) [Huang et. al 2019]

Fig. 20. Comparison to [Huang et al. 2019]. Top row: hip bone. Bottom
row: liver. Red points are the markers from the CT scan. We used the publicly
available implementation of [Huang et al. 2019] to compute the normals,
followed by screened Poisson surface reconstruction using the points and
computed normals [Kazhdan and Hoppe 2013]. We used this combination
because it produced better results than running [Huang et al. 2019] directly.
Our method produces shapes that match the ground truth data more closely.

4.5 Comparison to variational methods

We compare our method to variational shape modeling methods on
an illustrative 1D example. Note that Figure 7 gave a comparison
on 3D muscle geometry. Consider an elastic 1D line segment whose
neutral shape is the interval [0, 1], and study its longitudinal 1D
deformation under the following setup. Let us prescribe hard attach-
ments whereby we attach endpoint 0 to position 0, and endpoint 1
to position 2. Furthermore, assume landmarks whereby point 1/4
is at 1/4, and point 1/2 is at 3/2. Effectively in this setup, we are
specifying that the subintervals [0, 1/4] and [1/2, 1] do not stretch,
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maximum principal
stretch

principal stretch ratio
(anisotropicity)

our optimized shape

wireframe
overlap : ground truth

Fig. 21. Quantitative evaluation on ground truth. We first performed
a dynamic FEM simulation with plasticity [Irving et al. 2004], whereby
the back of the dragon is fixed (red), and the head was pulled to the left
with uniform force. This produced our ground truth plastic deformation
gradients. We then selected 488 sparse triangle mesh vertices as landmarks
and ICP markers, and ran our method to compute Fp, and shape x. It can

be seen that Fj, and x match the ground truth closely.
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Fig. 22. Comparison to surface-based methods. We compare to the
“PRIMO” method [Botsch et al. 2006] because this method is a good rep-
resentative choice. It also has fewest artefacts in Figure 10 of the shape
deformation survey [Botsch and Sorkine 2008]. Our methods produces a
clearly superior result in the challenging scenario where the ICP markers
were placed to anisotropically stretch the beam in one transverse direction.
Our method also passes the standard shape deformation benchmark [Botsch
and Sorkine 2008].

whereas the subinterval [1/4, 1/2] stretches from its original length
of 1/4 to 5/4, (5x stretch). A variational formulation of order r is,

Ldx\2 1. 1,2 1. 32
[ ooy 1 (- 2 s
e J, (Va3 (6=3)) e
where C” denotes all functions [0, 1] — R whose derivatives exist
and are continuous up to order r. We solved these problems analyt-

ically in Mathematica for r = 1, 2, 3, each time for 3 representative
values @, and compared them (Figure 23) to our method in 1D,

_ L 1. 1 1. 3
min j; f‘bzdt+a((x(z—1)—1)24-()((5)—5)2)

fo x(t)eCT
+ﬁfl(ﬁ ~1)%ar (26)
o \fp
1 .
s.t.x(t) = argminf (i - l)zdt. (27)
x(necrJo Jp
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Observe that, in the same vein as in 3D, we can decompose X =
fefp, whereby scalar functions f. and f}, and the f§ term are the
equivalents of the elastic and plastic deformation gradients, and
the elastic energy, respectively. It can be seen that our method
produces a better fit to the data and a significantly less wiggly
solution, compared to variational methods (Figure 23).

2.5 2.5 2.5 2.5
2] 2 2 2 /.
1.5 . 1.5 [ 1.5 [ 1.5 [
y // /
/ /
/
1] 1 / 1 / 1
/ yi /i
/ / /
0.5 /,r’ os| / osl / 0.5]
/ / /
. /e /. .
4
0.25 0.5 0.75 1 0.25 0.5 0.75 1. 0.25 0.5 0.75 1. 0.25 0.5 0.75 1.0
Variational; order 1 Variational; order 2 Variational; order 3 Our method

Fig. 23. Comparison to variational methods. A 1D string of length 1 is
attached on both ends. The left attachment is fixed. The right attachment
is moved to coordinate 2. The spring thus stretches longitudinally while
trying to obey the two landmarks at ¢ = 1/4 and ¢ = 1/2. Y-axis gives the
deformed 1D position of the corresponding material point on the X-axis.
Big and small dots denote the attachments and landmarks, respectively.
For each method, we plot the result under a few representative parameters.
With variational methods, one has to either give up meeting the landmarks,
or the curve becomes wiggly. Similar behavior can also be observed in 3D
variational results (Figure 7). Our method produces a deformation profile
whereby the slope (total 1D deformation gradient) on all three subintervals
[0, 1/4], [1/4, 1/2], [1/2, 1] approximately matches the slope implied by
the attachments and landmarks (1, 5, 1, respectively). Note that the shown
output curves are only C”"! and not in C” at the two juncture points
1/4, 1/2; however, their r-th derivative is integrable and they are the optimal
Cauchy limit of a score-decreasing sequence of curves in C”.

4.6 Comparison to ICP methods

\ front view \ ‘ side view ‘

1 //
J v

our method penalize difference our method  penalize difference
of [F b] of [F b]

Fig. 24. Comparison to methods that penalize the difference of neigh-
boring affine transformations [F b]. These methods produce a result
similar to the variational method and suffer from wiggle artifects.
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Fig. 25. Comparison to Epe,q. We deformed the surface using the
ShapeOp library. Here, « is the strength of the marker constraints (at-
tachments and ICP markers) relative to the bending energy. In the beam
example, our method is shown in green wireframe, and Epepgq is shown as
solid. Low values of « (such as, for example, a = 10%) cannot satisfy the con-
strains; and we therefore use & = 107 and « = 10% to meet the constraints
in the beam and muscle examples, respectively. It can be seen that the Epeng
method suffers from volume loss in the beam example. In addition, it fails to
grow the beam (the middle is collapsed). Wiggle artefacts can be observed
in the Epeng method on the muscle.

Penalizing the differences of affine transformations between neigh-
boring vertices is one of the commonly used smoothness terms in
“classical” ICP algorithms [Allen et al. 2003; Amberg et al. 2007;
Li et al. 2008]. Namely, these methods optimize for a 3 X 4 affine
transformation A = [F b] (x — Fx + b) at each vertex, and penalize
an energy that is the sum of the differences in the [F b] matrices
between adjacent vertices, plus the ICP energy. This is similar to
variational methods [Botsch and Kobbelt 2004; Sumner and Popovi¢
2004], which penalize the difference in F (as opposed to [F b]). We
provide a comparison on our hand muscle example; results are sim-
ilar to variational methods (Figure 24). Note that “classical” ICP
algorithms assume dense correspondences; they produce artefacts
under sparse correspondences (Figure 24).

4.7 Comparison to ShapeOP

As shown by previous work, variational methods suffer from arte-
facts under large rotations [Botsch and Sorkine 2008]. One can en-
hance variational methods by adding local rotations to each vertex,
producing the energy

1
Boend = 5= ) Ai lA%i ~ Rkl (28)
1 L i
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Fig. 26. Comparison to [Gietzen et al. 2019]. We compare our method
to two different deformation energies used in [Gietzen et al. 2019]. Equa-
tion 1 penalizes the volume change relative to the previous ICP iteration.
Equation 5 penalizes Epengq relative to the previous ICP iteration (“incre-
mental plasticity”). On the beam example, our method is shown in green
wireframe, whereas the compared method is shown solid. It can be seen that
the “incremental plasticity” method suffers from similar artefacts as other
prior methods (but to a lesser degree). However, “incremental plasticity”
introduces its own problems, namely volume loss and waviness (observable
during bending the beam) and sharp creases (occurring while growing the
muscle). To remove any effects of incorrect correspondence from the exper-
iment, both examples use landmark constraints (shown as blue spheres);
results are even more favorable to our method if using ICP constraints.

used by [Achenbach et al. 2015; Bouaziz et al. 2014; Gietzen et al.
2019]. Here, A; is the local Voronoi area of vertex i. We used the
publicly available ShapeOp library [Bouaziz et al. 2012, 2014] to im-
plement Ep.,q4. We then use Epepq for shape deformation by adding
the ICP energy to it, and compare it to our method (Figure 25). The
Epend energy produces visible artefacts: when the beam is bent,
there is a visible volume loss. When the beam is bent and forced to
grow by the ICP markers, Ejeng cannot grow the volume properly
(the middle of the beam collapses). Similarly, wiggling artefacts can
be observed in our hand muscle example. This is not surprising as
rotations are relatively small in this example, and therefore Epepngq
becomes the variational biharmonic energy.

4.8 Comparison to incremental plasticity

One idea explored in prior work is to incrementally convert “elastic”
deformations into “plasticity” after each ICP iteration [Gietzen et al.
2019; Sahillioglu and Kavan 2015]. However, doing so introduces an
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unwanted hysteresis-like effect. To demonstrate this, we compare
our method to [Gietzen et al. 2019] who used two different ener-
gies combined with the “incremental plasticity” strategy. For the
skull, they used an energy that penalizes volume change (Equation
1 in [Gietzen et al. 2019]). In the beam example, we can see that
as one incrementally converts “elastic” deformation into “plastic”
deformation, the bending beam undergoes a large spurious volume
change. When imposing constraints that should cause the beam
to inflate in its central region, the incremental plasticity method
produces spikes (Figure 26, top left). This is because the constraints
require volume to grow, but the energy penalizes volume growth.
For the skin, Gietzen et al. used an energy similar to Equation 28
(Equation 5 in [Gietzen et al. 2019]), combined with “incremental
plasticity”. On the bending beam, the method suffers from a loss
of volume and still causes the middle of the beam to collapse (Fig-
ure 26, top right). In the muscle example (Figure 26, bottom), the
wiggle artefacts can be reduced by applying “incremental plastic-
ity”. However, the method introduces a vertical sharp edge at the
middle of the muscle (clearly seen in the side view); our method has
no such artefacts. The key difference to our method is that in the
incremental plasticity method, the elasticity is explicitly converted
to plasticity without any controlling criteria. Our method, however,
finds optimal plastic strains, via optimization. For example, this
makes it possible to employ minimal plastic strains when elastic
energy can already do a good job.

] solid: E,
wireframe: our method

solid: E,_ -+ "incremental plasticity”
‘end
wireframe: our method

Fig.27. Comparison to Epe,q on the shape benchmark of [Botsch and
Sorkine 2008].

We also compare to ShapeOp and “incremental plasticity” on the
benchmark examples of [Botsch and Sorkine 2008] (Figure 27). The
ShapeOp cylinder suffers from the same volume loss problem as the
beam. In addition, Epepq causes self-collisions on the cactus example.
“Incremental plasticity” improves the results somewhat, but it still
cannot pass the benchmark.
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5 CONCLUSION

We gave a shape deformation method that can model objects under-
going large spatially varying strains. Our method works by comput-
ing a plastic deformation gradient at each tet, such that the mesh
deformed by these plastic deformation gradients matches the pro-
vided sparse landmarks and closest-point constraints. We support
both constrained and unconstrained objects; the latter are supported
by giving a numerical method to solve large sparse linear systems
of equations with a known nullspace. We applied our method to the
extraction of shapes of organs from medical images. Our method has
been designed to extract as much information as possible from MRI
images, despite the soft boundaries between the different organs.
We extracted hand muscles, a liver, a hip bone and a hip muscle.

Our method does not require a dense target mesh; only a sparse
set of observations is needed. If a dense target mesh is available, the
problem becomes somewhat easier, as one can then use standard
ICP algorithms. However, medical images contain many ambigui-
ties and regions where there is not a sufficient contrast to clearly
disambiguate two adjacent medical organs; making it impractical to
extract dense target meshes. We apply our method to solid objects,
but our plastic strain shape deformation method could also be used
for shells (cloth). Doing so would require formulating the elastic
energy of a plastically deformed FEM cloth, and computing the en-
ergy gradients and Hessians with respect to the plastic parameters.
The size of the small square dense matrix that we need to invert in
our incremental solve is three times the number of markers. While
we easily employed up to a thousand of markers in our work, our
method will slow down under a large number of markers. We do
not re-mesh our tet meshes during the optimization. If the plastic
strain causes some tetrahedra to collapse or nearly collapse, this
will introduce numerical instabilities. Although not a problem in
our examples (see Figure 17), such situations could be handled by re-
meshing the tet mesh during the optimization [Bargteil et al. 2007].
Our method requires a plausible template with a non-degenerate tet
mesh. Re-meshing is important future work as it could extend the
reach of our method, enabling one to start the optimization simply
from a sphere tet mesh.
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A PLASTIC STRAIN LAPLACIAN AND ITS NULLSPACE

Let L¢ € R™*™ denote the discrete mesh Laplacian for scalar fields
on mesh tetrahedra [Zhang 2004],

#adjacent tets  if i = j,
L% ;=4 -1 if i # j, and i, j are adjacent,  (29)
0 otherwise.

Given a plastic strain state s = [sq, 2, 3, 54, 85, S¢] € R™ where
si € R™, define the plastic strain Laplacian

Ls = [Lsq, V2L sy, V2L s3, L s4, V2L ss5, Lsg], (30)

where the V2 were added to account for the fact that sy, s3, s5 control
two entries in the symmetric matrix Fj, € R3*3,

Lemma: Assume that the tet mesh M has a single connected com-
ponent. Then, the nullspace of L is 6-dimensional and consists of
vectors /; = [s1,...,5¢] where s; € R™ is all ones when j = i, and
all zeros otherwise.

Proof: First, observe that L€ is symmetric positive semi-definite
with a single nullspace vector, namely the vector of all 1s. This
follows from the identity

xT L5y = Z

i and j adjacent

(xi — xj)%, (31)

ie., x L*°x = 0 is only possible if all x; are the same.

We have 0 = sTLs = Z?zl §isiTLSCsi, where & = V2 fori =
2,3,5; and 1 otherwise. Because L%¢ is symmetric positive semi-
definite, each s; must either be 0 or a non-zero nullspace vector
of L%, i.e., a vector of all 1s. A linearly independent orthonormal
nullspace basis emerges when we have a vector for all 1s for exactly
one i. There are 6 such choices, giving the vectors ¢/;; we normalize
them by dividing with /m. L]
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B FIRST AND SECOND DERIVATIVES OF ELASTIC
ENERGY WITH RESPECT TO PLASTIC STRAIN
For convenience, we denote Fj, ; as i—th entry of the vector vec(Fy) €
R®. The first-order derivatives are
06 _ 0y OF . 0F

—_— = : = : s 32
Ox; O0F, 0Ox; Ox; (2
& 0 Vv F, \%
6_= _¢+6_ =VP: OFe +6— ,  where (33)
HFP’i an’,’ ani 6Fp,i ani
-1
6Fe OF 1 aFe an
= — =F d 34
aXi aXi P 6Fp’i an,i’ an ( )
J|F
v _ [ |V0. (35)
3Fp’i 6Fpi

Here, P is the first Piola-Kirchhoff stress tensor and dF/dx is a

constant matrix commonly used in the equations for FEM simulation.

For the second-order derivatives, we first compute 32&/9x?. This
is the tangent stiffness matrix in the FEM simulation under a fixed
Fp. It is computed as

0’6 _9F. T P OF,
dxidx;  Ox;  OF Ox;
Here, OP/JF, is a standard term in FEM nonlinear elastic simulation;

it only depends on the strain-stress law (the material model). Next,
we compute 025/(6x(9Fp),

(36)

9%& v dF,
—_— L — |+ (37)
6xi(9Fp’j 6Fp,j Oxj
T 2
& : a—P: % +Vpai, where (38)
OFp, j 0F, Ox; 0xi0Fp
9%F, _ OF OF;" 59)
(9X,'(9Fp,j B 0xj an’j'
Finally, we have
9%& *v
= v+ (40)
OFp,i0Fp j  OFp i0Fp j
9°F, F. T 0P  OF
vipr ——+ =% . —: ¢ (41)
6Fp,ian,]’ an,j OF, 6Fp’i
vV 9 vV a9
9 4 9 4 , where (42)
OFp,j OFpi  OFp i OFp j
Fra% 8% |F
_ 2l Vo (43)
an’jan,j an,ian,j
62F aZF—l

an,ian,j 6Fp’ iaFP,j '

The quantities ¢, P and 9P/JF, are determined by the chosen elastic
material model. After computing the above derivatives, there is
still a missing link between Fj, and s. Because we want to directly
optimize s, we also need the derivatives of &(Fj(s), x) with respect
to s. From Equation 2 we can see that F), is linearly dependent on

s. Therefore, so we can define a matrix Y such that vec(Fp) = Ys.

Then all the derivatives can be easily transferred to derivation by s
by multiplying with Y.
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C PROOF OF SINGULAR LEMMA

Statement (i) follows from well-known linear algebra facts R(A) =
N(AT)L and dim(N (A)) +dim(R(A)) = p, and the symmetry of A.
As per (ii), A maps R(A) into itself, and no vector from R(A) maps
to zero, hence the restriction of A to R(A) is invertible, establishing
a unique solution to Ax = b with the property that x L ¢; for all
i =1,...,k. This unique solution is the minimizer of

1
min =xT Ax — bTx (45)
x 2
st. ylx=oforalli=1,....k (46)

When expressed using Lagrange multipliers, this gives Equation 15.
Suppose x = n + r is another solution and n € N(A) and r €
R(A). Then b = Ax = Ar and hence r is the unique solution from
Equation 15. The vector n can be an arbitrary nullspace vector,
proving the last statement of (ii). As per (iii), suppose we have
0 = B(n+r) = Ar+2i.<:1 i—i(l#fn)l//, Observe that the first summand
is in R(A) and the second in N (A). Hence, B(n + r) can only be
zero if both summands are zero. Ar = 0 implies r = 0. The second
summand can only be zero if n L ¢; for each i, which implies
that n = 0. Hence, B is invertible. The last statement of (iii) can be
verified by expanding (A + Z]lle Ofil//ilﬁiT) (x +yk A 1//1) [

i=1 a;

D PROOF OF NULLSPACE LEMMA

We are trying to prove that
K(Fp(s),x) is 6-dimensional
for any x that solves fe (s, x) =
0. First, if x is a solution, then
translating all vertices of the
object by the same constant
3-dimensional vector is also
a solution. This means that
vector ; := (e, ej,...,€) is
in the nullspace of K, where
e; € R3 isthe i-th standard ba-

sis vector, for i = 1, i’ 3. }I:I_OW’ Fig. 28. Illustration of the nullspace
suppose we rotate the object proof. The original forces F; sum to

with an infinitesimal rotation oo We have G, = RF;: note that R is
X = X +e; xX. Observe that  the same for all tets. Therefore, the ro-
for general plastic strains s, tated forces G; also sum to zero. Hence
the elastic forces in each in- there is no change in the internal elastic
dividual tet are not zero even force under a rotation, i.e., infinitesimal
in the equilibrium x; but the ~rotations are in the nullspace of K.
contributions of elastic forces on a tet mesh vertex from all ad-
jacent tets sum to zero. As we rotate the object, the forces con-
tributed by adjacent tets to a specific tet mesh vertex rotate by
the same rotation in each tet. Therefore, as these forces sum to
zero, they continue to sum to zero even under the rotation (see Fig-
ure 28). This means that the vector of infinitesimal displacements
Pa4i == [eiXx1,€i XXz, ..., e;Xxy] induced by the infinitesimal rota-
tion is in the nullspace of K, for each i = 1, 2, 3. Here, x; are the com-
ponents of x = [x1,x2,...,xn]. The vectors ¢;, i = 1,2,3,4,5,6,
form the nullspace of K. [ ]
Finally, we inform the reader that the nullspace of K(Fp(s), x) is
only 3-dimensional if x is not an elastic equilibrium. In this case,



only translations are in the nullspace. Infinitesimal rotations are
not in the nullspace because under an infinitesimal rotation, the
non-zero elastic forces f. rotate, i.e., they do not remain the same.
The assumption of x being the equilibrium shape is therefore crucial
(and is satisfied in our method).

E SECOND DERIVATIVE OF POLAR DECOMPOSITION

To compute the second-order derivatives, we differentiate

OF _ OR R aS 7
dF; — OF; OF;’
O2F 92R OR S  OR 84S 82S
—— =St ——— + —=— = +R——, (48)
6Fl-6Fj 6Fi(9Fj OF; aFj 6Fj O0F; (9Fi(?Fj
#R (. 89S ORIS IR 8S s o)
dF;0F; ~ \ ~0F;0F; O0F; 0F;  OF; OF; '

To compute 82R/(3F,~6Fj), we need to compute 825/(6F,-(9Fj) first.
This can be derived in the same way as for dS/dF;. Starting from
Equation 22, we have

0*FTF  9°S 4s 9SS S 9%
—— = ———S+ —— 4+ ——+S———.  (50)
OF;0F;  OF;0F; OF; OF;  OF; OF; OF;0F;
We can now solve a similar Sylvester equation
2
Vec(m) = (S®S) " vec(O), (51)
_0°FTF  8S s S 0S (52)
B 6F,-6Fj OF; (3Fj aFj OF; "

F FORMULAS FOR Ay,by,cx (EQUATION 6)

Let the attachment k be embedded into a tetrahedron t;. with barycen-
tric weights [wk, wk wk wk] . We have

1 2273274
A= Wil wEB wkl whi| sk e RPOR (53)
by = —yx € R>, (54)

where y; € R? is the attachment’s target position, I3 € R3*3 is the
identity matrix, and Sk € R12X37 jg 4 selection matrix that selects
the positions of vertices of t;. The scalar ¢y is the weight of the
attachment k. Equivalent formulas apply to landmarks and ICP
markers. The attachment energy and forces are,

1
Ea(x) = 5 D eull A+ by, (55)
k
d&,
i) = "= Y A (Agx +by). (56)
k

G MEETING CONSTRAINTS BY SCALING THE ELASTIC
STIFFNESS

In this section, we demonstrate that scaling the elastic stiffness
cannot be used to “better” meet the constraints. We illustrate this
on a simple toy problem of linear elasticity with linear constraints.
Denote the vertex displacements by u € R3" and the stiffness matrix
by K e R3nX3n_
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First, consider scaling the stiffness (K — @K) when using hard
constraints:

muin < Ku,u > (57)
st.Cu=b (58)
V.S.
nbin < (aK)u,u > (59)
st.Cu=b (60)

produces same u for any scalar o > 0.
Similarly, consider scaling stiffness (K — @K) when using soft
constraints:

min < (aK)u,u > +p||Cu — b||? (61)

u

pI‘OdUCCS same u as
min < Ku,u > +ﬂ/oc||Cu—b||2. (62)

u

Therefore, scaling the stiffness does not provide any more expressive
shape deformation power than tweaking f in:

min < Ku,u > +f||Cu — b||2. (63)
u

As one tweaks f in the above, one can choose between (A) meet-
ing the constraints well (when f >> 1), or (B) produce smooth
deformation (when f§ << 1). In option (A), one obtains sharp non-
smooth deformation ("spikes"), and in option (B) one does not meet
the constraints. In the middle territory, one doesn’t meet either
of these goals well, as seen in Figure 2.f. So, in summary, merely
increasing the elastic stiffness does not help with better satisfying
the constraints.
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