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Abstract

The finite element method (FEM) with model reduction is widely used to simulate deformable
objects. Improving the performance and rendering quality of deformable objects simulated
using FEM with model reduction has been a critical problem for several years. As computer
technologies rapidly evolve, GPUs have seen significant improvement. It is clear that modern
graphics processing units (GPUs) play an important role in real-time rendering and parallel
computing. The existing FEM model reduction rendering systems, however, utilize a large
amount of CPU resources but relatively little GPU resources. Our experiments show that vertex
position computations and mesh rendering account for a large percentage of the CPU’s overhead
in the existing system. Therefore, this work investigates how to efficiently employ GPUs for
vertex position computation (Uq computation) and rendering of deformable objects simulated
using model reduction.

We first survey the related GPU technologies. Then we give a CUDA-based algorithm for Uq
computation and vertex global position computation, which we demonstrate to remarkably speed
up the Uq computation. We then give a new system architecture to reduce the communication
between the CPU and GPU. Meanwhile, the system performance is further improved by
making the CPU and GPU work in parallel. Additionally, a new rendering system based on
modern OpenGL features is developed. It not only enhances the rendering performance but
also improves the rendering quality. Finally, our experiments show that the proposed system
outperforms the previous systems in terms of the computational cost as well as the rendering
quality.
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Chapter 1

Introduction

This thesis is about accelerating elastic deformable object model reduction simulations using
GPUs. In physics, partial differential equations are used to simulate deformations of solid
objects. The finite element method (FEM) is a common discretization method to simulate
deformable objects. Detailed meshes, however, result in a large number of deformable degrees
of freedom. Suppose there are n vertices in the volumetric mesh. Let u be the displacement
of all vertices of the volumetric mesh. Here u is a vector whose size is 3n. Therefore, there
are 3n unknown degrees of freedom in the system. As the accuracy of FEM increases, the
volumetric mesh becomes finer and thereby n increases. As a result, for each time step, a large
number of equations must be solved. Furthermore, the differential equations that describe the
deformable object are nonlinear. Although the general FEM model is reasonably accurate,
the simulation system is slow. To address this, such general FEM models can be simplified
using dimensional model reduction. The basic idea is that the u vector is transformed into the
space with a much lower dimensionality. Denote the displacements in the reduced space by
q. Full-space displacements u are computed as u = Uq, where U is an 3n× r matrix and q
is a r-length vector. In general, r is much smaller than 3n. In our system, it is less than 32.
Therefore, reduced deformable models can be simulated with little computational effort, but
are not as accurate as the general FEM models. Every time after the equations are solved, u is
calculated by u =Uq. Next, any translations and rotations of the reduced deformable object are
taken into account, producing global vertex positions. These positions are then used to render
the mesh on the screen.

Suppose the mesh contains a large number of vertices and triangles. Using model reduction,
we can greatly reduce the time cost of physical simulation. However, when we try to render
the mesh on the screen, rendering alone can take a lot of time. This is because we need to first
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compute (update) positions of all vertices, and then transfer them to the GPU at every time
step. Without the consideration of the capacity of the main memory and the GPU memory, if
a rigid mesh is rendered, we only need to transfer all vertices from the main memory to the
GPU memory once, during the initialization of the rendering system. On the other hand, if
a deformable object is rendered, we have to compute and update the vertex position in the
GPU memory at each time step. This imposes a huge amount of communication for the system
PCI-E bus between the main memory and GPU memory. Consequently, this leads to a decrease
in the rendering speed. A similar phenomenon can be observed in computer games, where
rigid objects are widely used rather than deformable objects, commonly due to the overheads
associated with using deformable objects.

Graphics workstations with high-end CPU and GPU are widely used in graphics industries
and laboratories. The u = Uq computation and the vertex updating formulas have a highly
parallel structure. By using the GPU, we can make the computation more efficient. Moreover, if
Uq computation and vertex updating are performed by the GPU, the amount of communication
between the main memory and the GPU memory is greatly reduced. If all computation is
performed by the CPU but only rendering is processed by the GPU, CPU may still suffer from
a heavy workload. In contrast, GPU often has less tasks assigned to it and often stays idle.
Accordingly, by moving some parts of the computation from CPU to GPU, the CPU overhead
can be reduced and GPU can be better utilized.

As technologies rapidly develop in computer science, GPUs have seen significant improve-
ment. Compute Unified Device Architecture (CUDA) makes it possible to manipulate GPUs
more flexibly [15]. By using CUDA, we first move Uq computation and vertex updating from
the CPU to the GPU. It reduces not only the CPU workload but also the communications
between the CPU and GPU. Additionally, by using the core OpenGL profile, we redesigned the
rendering system to further improve the performance [16]. Finally, we provide a new simulator
system architecture that makes CPU and GPU work synchronously. The experimental results
show that our proposed system can accelerate the overall frame rate by about 5x in many cases.
Furthermore, the quality of rendering is greatly improved.

The remainder of the thesis is organized as follows. Chapter 2 gives related work and
preliminaries to the thesis. Next, the architecture of our simulation system and the corresponding
algorithms are described (Chapter 3). Chapter 4 presents the experimental results. Finally,
Chapter 5 provides a conclusion and future work.

1 Introduction



Chapter 2

Related Work

2.1 Real-time Rendering

2.1.1 Shadows

Shadows greatly improve the scene realism and are very important for 3D rendering. Nonethe-
less, shadows consume a lot of GPU computation recourses. Shadow maps and shadow volumes
are two classic algorithms for rendering shadows [5, 24]. Shadow volumes is a geometry-based
algorithm. It is accurate but slow for very complex meshes such as trees. On the other hand,
shadow mapping is one of the most popular algorithms for casting shadows in real-time applica-
tions due to fast computation. The classical shadow map algorithm can be considered as the
father of several diverse modern shadow mapping algorithms. On the downside, shadow maps
suffer from the problems of inaccuracy and aliasing. Figure 2.1a gives an example of aliasing
along the shadow outline. Many researchers have tried to improve the shadow accuracy as well
as performance.

Under different rendering conditions and environments, the algorithms behave differently.
Daytime outdoor scenes are a common scene in practice. They have only one strong light
source (the sun). The sun is a strong directional light that always casts clear shadows onto
the scene objects. A critical issue of casting shadows in outdoor scenes is that the large scene
area limits the accuracy of the depth map. In the shadow mapping algorithm, one needs to first
generate a depth map from the light location – this is called a shadow map. The size of the
shadow map is limited by the hardware’s specification. Moreover, as the size of the shadow map
increases, performance drops. To alleviate the problem, Stamminger et al. proposed perspective
shadow maps (PSM) [22]. In PSM, the depth map changes according to the distance between
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(a) Standard shadow maps. (b) Variance shadow maps.

Figure 2.1 Comparison between standard shadow maps and variance shadow maps.

(a) Standard shadow maps. (b) Parallel-split shadow maps.

Figure 2.2 Comparison between standard shadow maps and parallel-split shadow maps [12].
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the objects and camera. If there are many objects that can be seen from the camera, the depth
map may suffer from low resolution which can cause aliasing. To solve this problem, Zhang et
al. proposed the idea that the scene can be unevenly split into several parts according to the
distance to the camera, and the depth map is then generated separately, as illustrated in Figure
2.2 [26]. This approach is called parallel-split shadow maps (PSSM). The depth map of each
part can now be more detailed. With equal size of depth maps, the smaller a part is, the higher
resolution the depth map has. The closest part to the camera often occupies most of user’s view,
and needs the highest resolution of the depth map. The rendering performance decreases as the
number of parts increases, because the scene is rendered more times to generate depth maps for
each part. Related to this idea, if there is a key character in the scene we can generate another
depth map specifically for the character. This depth map will give the character’s shadows high
quality. As the character moves, the depth map will follow its movement. In this case, PSM
may further improve the quality of character’s shadows.

High resolution of the depth map makes the shadows more accurate. In addition to accuracy,
researchers tried to make shadows more realistic. The sun can be considered to emit directional
light. Since it is not a point light, there is no penumbra (partial shadow) around umbra (complete
shadow). Still, even in a sunny day the outline of shadows in outdoor scenes is not sharp due to
the diffraction of light rays. Percentage closer filtering (PCF) provides an approach to soften the
shadow boundary [20]. The insight is that it filters the results of depth comparisons instead of
filtering the depths. It randomly samples the depth map in a small area. By depth comparisons,
the percentage of how many points are unblocked can be calculated and is used to compute the
shadow factor. The drawback is that it randomly samples the shadow map rather than sample
it only once. Moreover, this approach cannot utilize the filtering functionality of the graphics
hardware, because it needs to do depth comparisons before filtering. Additionally, many sample
points are required in order to eliminate aliasing. Variance shadow maps (VSM) addresses the
problem of filtering. It estimates the percentage by Chebychev’s inequality. The algorithm is
hardware-friendly. Additionally, it uses less computation effort but produces good soft shadows.
Figure 2.1 gives a comparison between the standard shadow maps and variance shadow maps.

2.1.2 Transparency

The most common approach to rendering transparent objects is to render them back to front,
using traditional alpha-blending equation

C = AsrcCsrc +(1−Asrc)Cdest . (2.1)
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(a) Horn positions relationship. (b) Rendered with depth sorting.
(c) Rendered without depth sort-
ing.

Figure 2.3 Problems with alpha-blending.

This is also known as the over operator [19]. To improve the efficiency, we can pre-multiply
the alpha value with the source color [11]. We do not need to store the alpha value for each
intermediate pixel. Each iteration relies on current pixel’s alpha value. Another common way is
rendering objects from front to back. Then, the equations are

Cdest = Adest (AsrcCsrc)+Cdest

Adest = (1−Asrc)Adest .
(2.2)

The initial value of Adest is 1.0. Each time a new pixel is encountered, we update the Cdest

and Adest . Therefore, alpha value is stored with the RGB color in each iteration. Compared to
back-to-front method, the advantage of this method is that we know the previous iteration’s
alpha value. If the alpha value is close to 0, we don’t need to further process the remaining
pixels, because they won’t be seen any more. By using opacity thresholding, we can control
how deep we want to reach for each screen position [23].

The alpha-blending algorithms mentioned above must impose the condition that the pixels
at any screen position must be depth-sorted. If the front-to-back order of two objects is clear,
we can render the objects either from back to front or from front to back. However, if the front-
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to-back relationship of two objects is vague, we need to resolve this in the rasterization stage,
checking pixel by pixel. Otherwise, the blending results are incorrect, as shown in Figure 2.3c.
To address this problem, a different algorithm can be used, called order independent transparency
(OIT). For each screen position, an array is allocated. All the pixels that are rasterized on the
same screen position are stored in the array. After all pixels are rendered, we sort all pixels
in the arrays and then render the color by the traditional algorithms mentioned above. There
are ways to sort the pixels on the GPU, known as “A-buffer” and “k-buffer” [9]. The correct
result is shown in Figure 2.3b. The drawback of the OIT algorithm is that we need to store a
long list of pixels for one screen position in case of many overlapping pixels. Moreover, since
this is an image-based algorithm, the resolution significantly affects the memory storage and
computational speed.

2.2 General-Purpose Computation on GPU

2.2.1 GPU

GPUs are popular for their high parallelism and the speeds of the single-precision floating-point
computations, as shown in Figure 2.4. GPUs are designed for compute-intensive and highly
parallel computations. In the past two decades, GPUs have been greatly developed. Originally,
GPU was designed only for graphical rendering. Figure 2.5 shows the block diagram of NVIDIA
GeForce 6 series published in 2004-2005. The cores of the GPU have specific functionalities and
therefore, the usage of such a GPU is limited. Modern GPU cores are more general. Each core
is a general-purpose arithmetic unit that can perform the computations traditionally handled by
the CPU. With its parallel architecture, modern GPUs offer great advantages compared to CPUs
when the process of large data blocks is performed in parallel. These advantages also make the
topic of this thesis feasible. Take NVIDIA Kepler GPU architecture as an example (Figure 2.6).
It consists of several multiprocessors, an L2 cache, PCI-E bus interface and memory controllers.
For each multiprocessor, it contains hundreds of CUDA cores. They work similarly to the
CPU. Tasks are distributed among multiprocessors and handled concurrently. In addition to
the parallel structure, discrete GPUs are always equipped with high-bandwidth independent
memory on boards. Compared to CPU conventional memory, its bandwidth (30–192 GB/s)
is several times faster than conventional memory bandwidth (12–30 GB/s) [4]. GPU memory
access is much faster than CPU memory access.
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Figure 2.4 Giga floating-point operations per second (GFLOPS) comparison between CPUs
and GPUs [14].

Figure 2.5 NVIDIA GeForce 6 series block diagram [17].
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Figure 2.6 NVIDIA GeForce GTX 680 block diagram [13].

2.2.2 CUDA

CUDA is a parallel computing platform and programming model invented by NVIDIA. It is
used for manipulating GPUs to perform general-purpose computation. CUDA enables dramatic
increases in computing performance by harnessing the power of the GPU. With millions of
CUDA-enabled GPUs sold to date, software developers, scientists and researchers are finding
broad-ranging uses for GPU computing with CUDA [15]. In the CUDA model, GPU physical
architecture is carefully abstracted at a logic level. Generally, graphics cards consist of hundreds
of arithmetic cores and memory. Arithmetic cores basically load data from memory, perform
computation following the instructions in the GPU programs and store the data into memory.
In the CUDA model, the graphics card is described hierarchically, as illustrated in Figure 2.7.
The basic arithmetic unit is called a thread. For each thread, the same CUDA kernel function is
executed simultaneously. Thread has its own local memory and registers. The storage size is
small, typically tens of kilobytes. Additionally, each thread cannot access the memory of the
other threads. Still, the speed of the memory is the fastest in the hierarchy. Threads are grouped
into blocks. Each block consists of hundreds of threads and a shared memory. Shared memory
is slower and larger than local memory. Every thread in the same block can access the shared
memory of the block. Threads, however, cannot access other blocks’ shared memory. Blocks
are grouped into a grid. A grid contains thousands of blocks. The grid can be considered as
the top level of the hierarchy. Correspondingly, another type of memory is defined at this level.
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There are three types of memory: constant memory, texture memory and global memory. All of
them are globally accessible by all threads. The speeds of these memory types are the slowest
in the hierarchy. A fast CUDA program should completely utilize the parallel structure and the
hierarchy, and avoid too many global memory accesses. CUDA specifications under different
compute capabilities differ from each other. The work of this thesis is based on compute
capability 3.0. Accordingly, the following description is under compute capability 3.0 and may
not be valid for other compute capabilities.

Registers

Thread (0,0)

Local 
Memory

Registers

Thread (1,0)

Local 
Memory

Shared Memory

Block (0,0)

Global Memory

Constant Memory

Texture Memory

Registers

Thread (0,0)

Local 
Memory

Registers

Thread (1,0)

Local 
Memory

Shared Memory

Block (1,0)

Grid

Block (0,0) Block (1,0) Block (2,0)

Block (0,1) Block (1,1) Block (2,1)

Grid

Block (1,0)

Thread (0,0) Thread (1,0) Thread (2,0) Thread (3,0)

Thread (0,1) Thread (1,1) Thread (2,1) Thread (3,1)

Figure 2.7 CUDA hierarchy diagram.

CUDA Instruction Execution

All threads in a CUDA program execute the same kernel function. Suppose there are no flow
control instructions. Then, at each moment of time, all threads execute the same instruction.
The instructions are executed as warps by multiprocessors. Warp is an execution unit defined as
a group of threads. It consists of 32 threads. GPU uses the warp as the basic execution unit.
How many warps are executed per cycle in one multiprocessor is limited by the instruction type
as well as the number of operations per cycle. The specifics depends on the GPU specification.

The GPU specification provides the information about the number of multiprocessors. It
essentially describes how powerful a GPU is. Besides the GPU specification, the types of
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instructions heavily affect the number of operations per cycle. Table 2.1 lists the number of
operations per clock cycle that one multiprocessor can execute for common native arithmetic
instructions. Executing 32-bit floating-point add, multiply, multiply-add instructions is typically
24 times faster than 64-bit instructions of the same kind. It is also faster than integer instructions.
This means that 32-bit floating-point instruction is the best choice in a CUDA program. GFLOPS
illustrated in Figure 2.4 also illustrates the same idea.

Table 2.1 Number of operations per clock cycle per multiprocessor for native arithmetic
instructions [14].

Instruction Type
Compute Capability

2.0 3.0 5.x
32-bit floating-point add, multiply,
multiply-add

32 192 128

64-bit floating-point add, multiply,
multiply-add

4 8 1

32-bit floating-point reciprocal, recip-
rocal square root, base-2 logarithm
(__log2f), base-2 exponential (exp2f),
sine (__sinf), cosine (__cosf)

4 32 32

32-bit integer add, extended-precision
add, subtract, extended-precision sub-
tract

32 160 128

32-bit integer multiply, multiply-add,
extended-precision multiply-add

16 32 Multiple in-
structions

24-bit integer multiply (__[u]mul24) Multiple in-
structions

Multiple in-
structions

Multiple in-
structions

32-bit integer shift 16 32 64
compare, minimum, maximum 32 160 64
32-bit integer bit reverse, bit field extrac-
t/insert

16 32 64

Besides the type of arithmetic instructions, flow control instructions could significantly
impact the effective instruction throughput. If there are different execution paths in the same
warp, those paths will be serialized. If there is only one execution paths in the same warp, but
the number of valid threads is less than 32 (e.g. a if statement without else), the concurrency of
the warp is worse and the utilization of the GPU is lower. Therefore, flow control instructions
should be used as little as possible. Since CUDA is a parallel computing platform, there
are some synchronization instructions. Function __syncthreads is widely used in CUDA to
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synchronize all threads in a block. However, it should be avoided as much as possible, because
it costs 128 cycles in compute capability 3.0 [14].

CUDA Memory Access

Memory access is a critical part of the CUDA program. It significantly affects the performance.
As described above, CUDA has a hierarchical memory structure. The fastest but the smallest
memory is the thread local memory and thread registers. A slower memory is shared mem-
ory/L1 cache that exists in each block. It is relatively larger and typically has about 64KB.
Actually 64KB is program-configurable in between shared memory and L1 cache. The slowest
memory is device global memory that contains constant memory, texture memory and global
memory. Constant memory is the smallest memory at that level, but it is the fastest one if it
is cached. Constant memory is read-only during the GPU computation. Typically, we store
small parameters into the constant memory. They are frequently used during execution and
will be cached. On the other hand, texture memory is used for storing the texture and cached
in the read-only cache of each multiprocessor. This operation is efficient when users want to
sample the texture, because GPU provides various kinds of memory fetching and data filtering
functionalities. Furthermore, the cache of texture memory provides a higher hit rate if the data
has good spatial locality [7]. Global memory is a basic type of memory. It is similar to the
usage of main memory. Users can store scalars, vectors and arrays into global memory. Unlike
texture memory, it does not have many ways to sample and fetch data. Still, global memory
is also cached in one unique L2 cache that can be accessed by all multiprocessors, as shown
in Figure 2.6. From the hierarchy, we can see that we should carefully design the data storage
to improve the performance. Too many accesses to global memory should be avoided. If the
data is frequently used, we should fetch them from global memory to a shared memory or even
lower levels.

The global memory data is align-accessed by the GPU. The size of a GPU memory transac-
tion is typically 32, 64 or 128 bytes. Memory accesses of the warp are coalesced into one or
more of these transactions. The more bytes the warp needs, the more transactions are needed.
Additionally, if the accessed data address is not aligned, extra transactions are needed and
thereby unused data is accessed. This is shown in Figure 2.8. If data is sparsely stored in
memory, it will cause a lot of unused data accesses. Therefore, if the address of data that GPU
accessed is aligned and the accesses of a warp are sequential, the memory access time will
be optimized. The L2 cache size is usually smaller than 1.5MB, so the size of L2 cache is
much smaller than the sum of shared memory in all thread blocks [25]. Therefore, it is better to
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Figure 2.8 Examples of global memory accesses by a warp. Each thread accesses one 4-byte
word. Corresponding memory transactions are displayed in green.

cache data into shared memory. If a data block is frequently used, it should be loaded to shared
memory of the corresponding thread block first.

Shared memory in each block is composed of banks. If two threads in the same warp access
the same bank, but not the same 64-bit word, bank conflicts will occur. Figure 2.9 illustrates the
concept of a bank conflict. If a bank conflict happens, memory transactions will be serialized,
costing more time to access the data in the shared memory. The data layout in shared memory
can greatly impact the memory access time.

CUDA Computation

In order to use CUDA parallel architecture, the matrix multiplication is decomposed as follows:

C = AB =


A1

A2
...

An


[
B1 B2 ... Bn

]
=


A1B1 A1B2 . . . A1Bn

A2B1 A2B2 . . . A2Bn
...

... . . . ...
AnB1 AnB2 . . . AnBn

 (2.3)
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Figure 2.10 Matrix multiplication using CUDA [14].
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Each sub-multiplication can be addressed separately. If the data required for each sub-
multiplication is less than the shared memory of each block, one or more sub-multiplications
can be calculated inside one thread block. Otherwise, sub-multiplications can be further de-
composed, as illustrated in Figure 2.10. The algorithm is described in the NVIDIA CUDA
programming guide [14]. Each time we read a pair of sub-matrices from Ai and B j, and store
them to shared memory. Each thread takes one row and one column from the sub-matrices,
calculates their dot product, records the result and waits for computing another pair of sub-
matrices. After all sub-matrices of Ai and B j are processed, the corresponding sub-matrix in C
is computed. By using shared memory, we avoid repetitive loading from global memory, which
saves a lot of time.

Matrix-vector multiplication can be considered as one kind of matrix multiplication. There-
fore, we can use the same idea to compute it. The algorithm is a general method for matrix
multiplication, so it may not be the best algorithm for all cases. Different approaches exist
for specific cases. Bell and Garland provided an efficient method for sparse matrix-vector
multiplication [2]. They provide several CUDA kernel functions that are suitable for different
representations of sparse matrices. Uq computation is a specific kind of matrix-vector multi-
plication. The U matrix has a very large number of rows but few columns. Additionally, q is
typically a small vector, with dimension less than 32. In the following chapter, we describe how
we perform the Uq computation.



Chapter 3

Simulation System

3.1 System Overview

Based on the GPU structure, we propose a novel architecture and CUDA approach to improving
the performance of the simulation system that has one or more deformable domains simulated by
FEM and model reduction. The system consists of a physically based simulation and rendering.
For physically based simulation, it consists of the computation of kinematics and dynamics in
the reduced space, the u =Uq computation and vertex updating. The overall workflow of our
system is shown in Figure 3.1a. Compared to the workflow of previous systems, our system
enables the CPU and GPU to work at the same time, and thereby decreases the time cost of each
time step. Moreover, our system not only reduces the CPU load, but also reduces the amount of
communication between the CPU and GPU.

When our system is running, CPU only computes the kinematics and dynamics based on the
data from the previous time step. At the end of the current time step, new coordinates, velocities
and accelerations in the reduced space are computed. Based on the reduced coordinates q and
rigid transformations computed by previous time step, GPU calculates new u, vertex global
positions, and eventually renders the mesh on the screen. Therefore, in the same time step, the
tasks on CPU and GPU are independent. Compared to our system, previous architectures are
much simpler, as shown in Figure 3.1b. However, previous architectures do not fully utilize the
GPU. When CPU is working, GPU may be in an idle state, and vice versa.
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Figure 3.1 The workflows of two time steps in different systems.

3.2 CUDA Computation

3.2.1 Single Domain Uq Computation

If there is only one deformable domain in the system, there is only one U matrix and one q
vector to be multiplied in each time step. For all vertices, the displacement u can be computed
by u =Uq. Due to the properties of GPU, the U matrix and q vector storage layouts are critical
for the algorithm performance. U is a modal matrix with 3n rows and r columns. For each
vertex i, the displacement ui is computed by

ui =

 ∑
r
j U3i, jq j

∑
r
j(U3i+1, jq j)

∑
r
f (U3i+2, jq j)

 (3.1)

where Ui, j is the element in row i and column j. Denote ui by (ui1,ui2,ui3)
T . From Equation 3.1,

ui j is computed as a sum of a series of multiplications. The multiplications are independent
of each other and can be executed in parallel. We distribute each multiplication into dedicated
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GPU threads. In each thread, the program fetches a part of the U matrix and a part of the q
vector from global memory and multiplies them together. Since the size of q is usually less than
32, in the computation of each ui j, the summation of the results of the multiplications can be
computed within 32 threads, i.e., one warp. Finally, the result of ui j is stored into the global
memory.

For each GPU block that has w columns and h rows, we allocate T threads. Denote a GPU
thread by thdi j, where 0 ≤ i < h, 0 ≤ j < w and h×w = T . We set w to the number of the
threads in a warp. The reason for this is that a warp is the basic execution unit. This can also
avoid bank conflicts. Take r = 30 as an example. With the basic idea of computing Uq above,
there is only one active thread per warp when the final summation is computed. As a result,
the GPU may be under-utilized and the performance decreases. To avoid this, we put four
multiplications into one thread. Then the multiplications are grouped into groups of four. There
are two reasons for grouping. First, we can utilize four times more active threads per warp
during the final summation. Moreover, in GPUs, the vector multiplication is more efficient than
the scalar multiplication. GPUs can calculate the four multiplications as one operation. After
vector multiplication, the local summation of the four elements in the result vector is performed
by each thread, improving concurrency. The summation result is stored into shared memory
for later usage. Denote the k-th group of q by qk, the k-th group of U3i+ j by Uk

3i+ j and the k-th
group of the sub-summation of ui j by uk

i j. Then, Equation 3.1 is rewritten as follows:

ui j = ∑
k

uk
i j

uk
i j = qk ·Uk

3i+ j

qk = (q4k,q4k+1,q4k+2,q4k+3)
T

Uk
i =

(
Ui,4k,Ui,4k+1,Ui,4k+2,Ui,4k+3

)T

(3.2)

Shared memory data storage layout is critical for the time cost of the Uq computation.
Before describing the shared memory layout, we need to discuss how floating point values are
represented and managed by GPUs. We use 32-bit single-precision floating-point computation
instead of 64-bit double-precision which are more commonly used by CPU simulation programs.
There are three reasons for this. First of all, the 32-bit single-float operations are the fastest in
its class among all other data types in the GPU. Additionally, the fetch and store for 4-byte
data type are faster than for the 8-byte data type. Moreover, the final displacement ui is used
only for rendering and collision detection. They do not need high precision as in physical based
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simulation. Especially for rendering, OpenGL only accepts single-precision values in most
cases anyway. In the following sections, we use 32-bit single-precision.

Since the multiplications are grouped by four, each warp can compute more than one ui j

at the same time. Explicitly, we can compute more than three ui j at the same time. Denote
the size of q vector by r. After q is grouped by four, the number of threads that are used for
computing one ui j is nvr =

⌈ r
4

⌉
. Then the number of ui j that can be computed at the same time

in a warp is ng =
⌊

32
nvr

⌋
. Since there is only one deformable domain, there is only one q vector.

This also means that the computation of each ui j uses the same q in one time step. To avoid
loading q multiple times, each block loads q from global memory to shared memory once at the
beginning of the computation. We only need to load one q into shared memory per block. Even
if two threads in a warp access the same 32-bit word, there won’t be any bank conflicts. Denote
the base address of shared memory for storing q by addrq. To avoid a bank conflict, qi will be
stored in

addrqi = addrq +

(
(i mod 4)×32+

⌊
i
4

⌋)
×4. (3.3)

The q storage layout is shown in Figure 3.2. Note that even though q is stored sequentially in the
shared memory, the bank conflict won’t happen if r is less or equal to 32. Still, by our method
there won’t be any bank conflict even if q is larger than 32. To load the q into shared memory,
thdi j will load q4 j+i into the corresponding memory address. After the loading process, each
thread thdik fetches qk and the corresponding Uk

i . The value qk can be read from the shared
memory, because q has already been loaded from the global memory to the shared memory
as described above. On the other hand, since Uk

i is used only once per Uq computation, we
do not need to load it into the shared memory in advance. Instead, Uk

i is directly loaded from
the global memory. To enhance the loading performance, Ui is stored sequentially in the GPU
memory. Since one warp can compute several ui j, we pack a series of continuous Ui into one
larger vector. The head address of it is 128-byte aligned, as shown in Figure 3.3. Denote the
base shared memory address for storing result uk

i j by addrusub. In thread thdik, uk
i j is computed

and stored in
addruk

i j
= addrusub +(i×32+ k)×4. (3.4)

Figure 3.2 shows the memory layout of addruk
i j
. After all uk

i j are computed for ui j, ui j are
finally computed by selected threads in a warp. The yellow threads in Figure 3.2 calculate the
summation. We can see that the thread thdik with k mod nvr = 0 computes the summation. As
described before, r is usually less equal to 32 in most situations. In the case that k is larger than
nvr, thdik will compute another ui′ j′ , by using qk mod nvr and Uk mod nvr

i′ .
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Figure 3.4 To address domains with different dimensions r, we use the group concept.

For convenience of final vertex world position computation, ui is stored as a 4-element
vector rather than 3-element vector and sequentially stored in global memory. Additionally, ui

is stored in the order of i. To enable CPU access to u stored in the GPU global memory, we
store u by page-locked host memory. Main memory for storing u is mapped to GPU memory,
and can be accessed by CPU and GPU at the same time. This also avoid too many memory copy
operations and thereby decreases the data communication time. The details will be described
later.

3.2.2 Multi-domain Uq Computation

With multiple domains or objects, there are several differences compared to single-domain
simulation. First, there is more than one independent deformable part in the system. Moreover,
different domains may have different U matrices and q vectors. One does not just have different
data in U and q; U and q may have different dimensions for different domains. We give a GPU
parallel algorithm to accelerate multiple Uq computation in this setting. We use an idea similar
to single Uq computation. However, the single-domain computation idea cannot be completely
adopted, because U matrices and q vectors are different in each domain.
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Consider a relatively simple situation where the dimension r of each domain is the same.
This situation is easy to address and can be solved by adapting the algorithm of the previous
section. We need to load more than one q for each block rather than only one q because vectors
q are different for the different domains. For U matrices, due to the same number of columns,
we can combine them together into one large U matrix. The work for each thread is the same as
before, except the storing addresses of U and q. In fact, r of all domains may not be the same.
Accordingly, we propose an approach to “uniformize” the different values of r. To do this, we
define a new concept called “group”. Threads of a warp are divided into a number of groups. A
group computes several ui j of the same domain, but not of different domains. Different groups
can compute ui j in the same or different domains. A group cannot be processed by two warps
at the same time. Denote the group width by wg. Group width means the number of threads

in a group. The number of groups in a warp is ng =
⌊

32
wg

⌋
. For a domain whose dimension

is r, we first group Ui by four as in the single domain algorithm. The U matrix now can be
considered as a 3n× nvr matrix and each element inside the matrix is a four-element vector.
We denote it by U ′. Now the number of ui j that a group of threads can address concurrently

becomes ngg =
⌊

wg
nvr

⌋
. To accommodate the group width, we reshape the U ′ matrix to make the

number of columns equal to wg. New matrix will have wg columns and n′ rows. n′ is computed

by n′ =
⌈

3n
ngg

⌉
. Define U ′k as a sub-matrix of the U ′ matrix. U ′k has nvr columns and n′ rows.

U ′ can be represented as

U ′ =


U ′1

U ′2

...

U ′ngg

 (3.5)

Then, U ′ is reshaped to
U ′′ =

[
U ′1 U ′2 ...U ′ngg

]
(3.6)

Conceptually, q is reshaped by the same idea as U . The q vector is first grouped by four
components to q′. Then q′ is duplicated ngg times. Denote it by q′′ The data actually used by
one group is one row of the U ′′ matrix and q′′ vector. When threads in a group compute Uq,
they perform the same calculation as in a single-domain Uq computation. Note that a group will
also compute one or more ui j rather than only one at the same time. This is shown in Figure 3.4.
In other words, when the final summation is calculated, there will be one or more active threads
inside one group.
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Figure 3.6 Thread states in a warp, under varying Wg.

Since a block has many threads, it will contain a lot of groups. As a result, a block may
process one or more domains. Therefore, a block needs to load one or more domains’ q.
Threads in a warp may use a different q. This time, we don’t cache q in shared memory. Instead,
we directly load them to the threads. This is because q is not reused as much as it in the
single-domain execution in each block. Additionally, one or more vectors q needs to be loaded
into a block, so synchronizing threads costs more time than before. Therefore, when Uq is
computed, threads need to know which part of q should be loaded, where ui j should be stored,
and the current domain’s dimension r. Accordingly, an extra meta-data vector is required for
each thread to assist with the Uq computation. For each thread, we use a 4-element vector to
store the required data. It contains the address of ui j for global memory storage, the address of
q in shared memory and nvr. The reason we use 4-element vectors to store three elements is
that this improves memory access performance.
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When there is more than one domain, we can use the grouping method to “uniformize”
all domains. Group width wg is an important parameter that influences the performance of
the algorithm and the utilization of the GPU. Suppose any domain’s dimension r is less or
equal to 32. Group width wg must be greater than or equal to 8 in order to compute one ui j

of the domains whose maximal dimension is 32. Admittedly, we can set wg to a number over
8. However, there will be more idle threads in a warp because a warp can only contain three
such groups. Undefined threads that are outside the groups are not used during the computation.
Moreover, there will be more idle threads in a group. Figure 3.6 illustrates these problems. To
utilize threads efficiently, we provide different sizes of groups, in order to be compatible with
various dimensions r. We found that there are a total of eight different nvr, i.e., from 1 to 8. For
nvr that equals to 1, 2, 4 and 8, we can use wg = 8. For nvr that equals to 3 and 6, we can use
wg = 6. For nvr that equals to 5 and 7, we can choose to address them separately and there will
be 4 different groups. This strategy can guarantee that there is no idle thread for each group
size. Still, there are four kernel executions in each time step. CUDA streaming technology
provides us with the functionality to parallelize kernel function execution and data transmission,
as shown in Figure 3.5. However, as the number of kernel function executions increases, the
time cost becomes more expensive. The technology cannot guarantee absolute parallelism of
the kernel execution and data transmission. Additionally, for each kernel execution, CPU and
GPU take a long time to prepare for it. Consequently, more kernel function calls will slow down
the computation. According to the experiments, we found that using 2 different sizes of groups
has the best performance as well as utilization rate of GPU threads. In this situation, domains
whose nvr is equal to 5 is merged into group with wg = 6. Domains whose nvr is equal to 7 is
merged into the group with wg = 8.

For multi-domain Uq computation, u is stored in the same way as in the single domain
situation. Vector u of each domain is stored sequentially in the memory.

3.2.3 Multi-domain Vertex Updating

After the displacement u is computed for each domain, new vertex position is computed, by
taking into account the domain’s global position and orientation. We call this process “vertex
updating”. The result of the vertex updating are the global vertex positions which can then be
used to render the mesh.

Triangle meshes are commonly used to represent objects in computer graphics. A triangle
mesh is given by a list of triangles. The triangle are represented by their vertices. Meshes can
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be rendered either as an array of triangle vertices or as an array of vertices with an array of
vertex indices. In the first approach, the number of vertices in the vertex array is a multiple of
three, because each three vertices in the array represent a triangle. In the second approach, the
triangles are denoted by an index array. Each three indices in the array account for a triangle.
The index is the vertex index in the vertex array. The second approach is more compact if there
are many duplicated vertices. In our system, we choose the first approach. Therefore, each
mesh triangle is treated and updated separately. Denote the displacement of domain i by ui. ui

has

ui =


ui

1

ui
2

...

ui
n


ui

j =
(
ui

j1,u
i
j2,u

i
j3
)T

(3.7)

When the system is initialized, we first unfold the mesh into separate triangles for domain i.
Denote the position of a triangle vertex by xi

j, normal by ni
j and tangent by t i

j. Denote the rest
position of a triangle vertex by xi

0 j, rest normal by ni
0 j and rest tangent by t i

0 j. Also, denote the
rigid rotation by Ri and translation by pi. A vertex is updated by

xi
j = Ri

(
xi

j0 +ui
k
)
+ pi

ni
j = Rini

j0

t i
j = Rit i

j0

(3.8)

We do not recompute the normal and tangent after the object is deformed, because doing so
would add additional cost to the CPU and GPU. Often, for reasonable deformations, it may be
difficult to recognize the error of normals and tangents. Consequently, normals and tangents are
only rigidly transformed.

The rotation matrix Ri is a 3×3 matrix. We can use a 4×4 homogeneous matrix packing
both rotation and translation. The equation of updating xi

j becomes

xi
j = Ti

(
xi

j0 +ui
k
)

Ti = PiRi
(3.9)
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where Pi is a 4× 4 translation matrix. Accordingly, there will only be three matrix-vector
multiplications and one vector addition for each vertex. Using a similar idea as in Uq com-
putation, we load commonly used data to shared memory. Transformation matrix Ti and rest
configurations are loaded into shared memory. Positions, normals and tangents are represented
as 4-element vectors, since the transformation matrix is a 4×4 matrix. Additionally, the warp
size is a multiple of four. As a result, a warp can calculate eight vertices at the same time. Each
thread inside a warp only computes one element of a vertex position, normal or tangent vector.
Each four threads compute one vertex.

For each three vertices, the same transformation matrix is used. We assume that each domain
has at least has three triangles, so each warp needs at most two matrices at the same time. The
transformation matrix is stored row major in the shared memory sequentially, so there is not
any overload for reading them. Additionally, there is not any bank conflicts when matrices
are read. In addition to the matrix, the rest position, normal and tangent of each vertex are
loaded into shared memory before the computation, because they are frequently used by matrix
multiplication. They are separately stored in shared memory because each thread in a warp can
exactly read data from the corresponding bank without any bank conflicts. Finally, the shared
memory layout is shown in Figure 3.7. Every time the computation starts, the program loads
the data to shared memory first. For thdi j, it loads the ( j mod 16)-th element in

(
2i+

⌊
j
2

⌋)
th

transformation matrix of the block. Since each block may load different transformation matrices,
what a thread should load is precomputed when the system is initialized. After matrix is loaded
into shared memory, we load the position, normal and tangent vectors into shared memory. For
thdi j in block k, it loads the ( j mod 4)-th element of the

(
nvbk+8i+

⌊
j
4

⌋)
-th vertex, where

nvb is the number of vertices each block can compute. It is the same for all blocks. When the
positions are fetched from global memory, we add the displacements to them before storing
them to the shared memory. Before the matrix-vector multiplication, we need to synchronize
all threads inside the block to guarantee that everything the computation needs is successfully
loaded into the shared memory. After the data is loaded into shared memory, each thread
calculates one element of a vertex and stores the result back to global memory directly.

3.2.4 Data communication

Figure 3.8 shows data communication between and within devices. Packed U matrices and
vertex rest positions, normals and tangents are stored into GPU global memory when the system
is initialized.
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In each time step, CPU computes new q, packs it for CUDA computation and flushes it to
the host q buffer. CPU only writes to the q buffer so the host q buffer can be a write-combine
memory [8]. It is page-locked host memory, which accelerates memory transactions [14].
Furthermore, it is write-combining which greatly improves the write performance. After the
CPU q buffer is updated, the data will be transferred to GPU memory. Since there is more
than one CUDA Uq computation kernel, kernel executions are streaming. To improve the
concurrency, we use asynchronous memory copy operations to copy data from the q buffer in
the CPU to the q buffer in the GPU. Consequently, data copying and kernel execution can be
parallelized. After the Uq computation, result u is placed into u buffer in the GPU. Vector u
is stored in a mapped memory which is one of the page-locked host memories. GPU memory
is mapped into CPU main memory. The advantage here is that mapped memory can reduce
many unnecessary copy operations between the CPU and GPU, accelerating the performance.
Typically, u is not used by CPU because vertex updating is performed by the GPU. Therefore,
copying between the CPU and GPU is avoided.

After the Uq computation, vertex updating begins. First, we acquire u from the u buffer
in the GPU and the transformation matrices from the transformation buffer in the GPU. The
transformation buffer is also write-combined memory. Additionally, the transformation buffer
in the CPU is updated after asynchronous q buffer copying starts. This ensures that transferring
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the transformation matrix data proceeds in parallel with the Uq computation. Until the u buffer
and transformation buffer in the GPU are updated, we do not start the vertex updating. The
output of vertex updating is memory-shared by CUDA and OpenGL. Before writing data to
memory, CUDA needs to set flags in order to gain control over the buffer. The output memory
is unmapped until vertex updating is completed. After that, the rendering can start. During the
vertex updating, CPU cannot retrieve data from the GPU vertex position buffer because the
operation has not been completed. To make vertex position viable during the computation, we
provide double buffers for vertex position buffer. During the computation, the back buffer can
be accessed by CPU. After vertex updating is done, the back buffer is updated. Since all buffer
are in the same GPU memory, the memory copy speed is fast. We also use mapped memory for
the back buffer to improve the CPU to GPU transfer speed. After vertex updating is done, the
rendering starts. Since CUDA and OpenGL both utilize the same GPU resources, the parallel
work is not significant. Therefore, in every timestep, CUDA computation is performed before
rendering begins.

Buffers in the GPU memory are not only write-combined or mapped, but are also portable
memory. Therefore, all buffers can be accessed by multiple threads. With this property, a
simulation program that runs on another thread can read and write the mapped memory.

3.3 Rendering

After the vertices are updated, they are rendered to the screen using the OpenGL core profile [16].
The overall pipeline is shown in Figure 3.9. The rendering process is divided into three
procedures. The first step is to generate a depth map for later shadow mapping. The second
step is to generate G-buffer (position and normal) and vertex index buffer as well as to shade
the objects. The last step is to post-process the color image and display it on the screen. The
goal of the rendering system is not only to increase the overall system frame rate, but also to
improve rendering quality. Since our system mainly focuses on simulation, we do not introduce
a lot of workload for rendering. The three steps are introduced in the following text.

3.3.1 Shadow Maps

Plants are our main simulating objects. Since they are complex meshes, shadow maps offer
advantages over shadow volumes. Nonetheless, traditional z-buffer shadow mapping has the
obvious aliasing problem if the depth map is not filtered properly. To render realistic shadows
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with a low cost, we choose to use variance shadow maps (VSM) [6]. The basic idea originates
from the following inequality and equations:

P(x ≤ t)≤ pmax (t)≡
σ2

σ2 +(t −µ)2

µ = E (x) = M1

σ
2 = E

(
x2)−E (x)2 = M2 −M1,

(3.10)

where M1 is the mean of the depth and M2 is the mean of the squared depth. Quantity P(x ≤ t)
gives the percentage of the surface that is in shadow. We use pmax (t) to approximate this value,
because pmax (t) is a good approximation of P(x ≤ t). Quantity pmax (t) can be computed by
Equation 3.10. To implement this algorithm, we first need to compute M1 and M2. Instead
of generating a traditional shadow map via a z-buffer from the light direction, we render the
depth value to the color framebuffer. The depth value is stored in one channel of each pixel.
In addition to the depth value, we also compute the square of the depth value and store it into
another channel of the pixel. This procedure is the “light view pass” in Figure 3.9. Another
issue which should be considered is that there may be transparent objects in the scene. The
transparent property is specified in object’s material, usually via the alpha value of its diffuse
color (may also be texture color). In real life, the shadows of transparent objects are lighter
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than the shadows of opaque objects. In the VSM algorithm, there is not a way to discriminate
whether a shadow is cast by a transparent object or by an opaque object. Therefore, we decide
that an object is considered as opaque if the transparency of it is higher than a pre-defined
threshold taplha. Otherwise, it is considered as a totally transparent object that doesn’t cast any
shadows.

A general depth map is generated by rendering the scene from the light viewpoint. We
assume that the sun is the default light source. A virtual camera is placed at some high
position and aimed in the direction opposite to light direction. The projection matrix used is the
orthographic matrix for the directional light. To further increase the shadow map quality, we try
to remove areas where no shadow is cast. To do this, we first compute an axis-aligned bounding
box (AABB) for the objects in their local space. If the objects are rigidly transformed into world
space, we only need to rigidly transform the bounding box accordingly. This means that we
do not need to re-compute the bounding box in each time step. Since the object is deformable,
we scale the bounding box by some factor to prevent the object from escaping the bounding
box in most situation. This works well for plants. After the bounding box in the world space is
calculated, we transform the bounding box to light view space. To do this, we need to compute
the light view coordinate system in the world space. Denote the center of world-space bounding
box by Obb. Let vl be the sun direction vector. Denote the maximum distance between any
point within the world space bounding box and Obb by dbb. The origin Olv of the light view
coordinate system expressed in the world space can be calculated by Olv = Obb+dbbvl . We use
a right-hand coordinate system, so the z-axis of the light view space is vl . The y-axis points up
in the world. Then, the x-axis can be computed using a cross-product. After we compute the
transformation matrix to the light view space, we can transform the world space bounding box
into the light view space. Based on the bounding box in the light view space, we re-compute
another AABB on it. This AABB is symmetric around xy face, xz face and yz face in the light
view space. To ensure that the shadow is successfully cast on the ground, we let four facets
of the AABB intersect with the ground plane. An orthographic matrix is computed to make
the AABB exactly project on the screen. With this algorithm, the depth map is dynamically
following the objects and they are always center in the depth map. Moreover, the object occupy
most of the area of the depth map.

If the generated shadow map is directly used when the objects are shaded, the shadow
boundary would not be smooth enough. To further improve the shadow quality, we apply
Gaussian blur on the depth map before it is used. Traditional Gaussian blur is done in one
drawing call. However, this costs a lot of GPU resources because one needs to sample tens
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of two-dimensional neighboring pixels in order to reach a considerable quality. Instead, we
use two-pass Gaussian blur to improve the performance. In the first pass, one-dimensional
Gaussian blur is applied in the X direction. In the second pass, it is applied in the Y direction.
The equations are as follows:

G(x,y) =
1

2πσ2 e
x2+y2

2σ2 =

(
1√

2πσ
e

x2

2σ2

)(
1√

2πσ
e

y2

2σ2

)
(3.11)

This equation will produce similar quality as traditional Gaussian blur. If the blur window size
is w, there are O

(
w2) pixels sampled by the traditional Gaussian blur. On the other hand, there

are only O(w) pixels sampled in the two-pass Gaussian blur. This procedure is performed after
‘light view pass’ and before object shading.

After we obtain the blurred shadow map, we are able to compute the shadow factor s f for
each fragment. In the fragment shader, we read M1 and M2 from the blurred depth map. If
the the depth of the current fragment in light view space is less than µ in Equation 3.10, the
fragment is not in a shadow. Otherwise, we compute the variance by Equation 3.10 and compute
the shadow factor s f , i.e., pmax.

3.3.2 Object Shading

We use the Phong lighting model to shade the objects [18]. The color C of a fragment is
calculated by

C = s fC′

C′ = Il

(
Ca +(n · vl)Cd +

(
v′e · vl

)k Cs

)
v′e = 2(ve ·n)n− ve

(3.12)

where ve is the normal vector that points to the current fragment from the camera, v′e is the
reflection vector ve, s f is the shadow factor computed by the method in previous section, Ca,
Cd and Cs are the material properties and n is the normal of the fragment. Quantity v′e can
be computed from the fragment world position, and Ca, Cd and Cs are sampled from material
textures. In the next section, we give more detail on this procedure. Vector n is calculated
automatically by the mesh vertex normal. Additionally, if the object mesh contains the normal
maps, we use them to re-compute the new normal. This approach is called bump mapping [3].
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Normal maps represent the local normal variety of a more fine surface, while vertex normals
represent coarse normals of the surface. By using normal maps, we can compute a more
detailed and accurate normal of each fragment. Thereby, the surface can have rich detail without
increasing the number of vertices. The tangent and the bi-tangent of a vertex are necessary
to implement the bump mapping. They are used to represent the local coordinate system
around the vertex, called tangent space. The normals in a normal map are in the tangent space.
Normally, a mesh data seldom contains tangent vectors and bi-tangent vectors but only normals,
texture coordinates and positions. To compute the tangent space for each fragment, we first
compute the tangent and bi-tangent for each vertex. We apply the method of Eric Lengyel [10].
The inputs of the method are the vertex normals and texture coordinates. The outputs are the
tangent and bi-tangent of each vertex. This is performed when the system is initialized.

In addition to shadows, we need to also determine the color for the opaque and transparent
objects. For example, consider the rendering of tree leaves. In order to improve performance,
the leaves are typically represented by a single quad polygon with a leaf texture image on it. In
the image, the leaf itself is opaque while other areas are transparent. By using alpha blending
technology, the transparent area is removed. Still, there are some areas that are translucent such
as the boundaries of leaves. This is good as it decreases aliasing on the boundaries. When
the translucent area is rendered, however, the final results is affected by the rendering order.
Suppose there are two leaves A and B. If A is in front of B but A is rendered first, we cannot
see B from the translucent area on A. The reason is that when A is rendered, there is nothing
on the scene. Therefore, A cannot blend its color with B. Accordingly, the leaf that is furthest
from the camera should be rendered first. The order issue cannot be solved at the geometric
level in most cases, so we solve it at the fragment level. The OIT approach is an accurate
approach to address this, but it may suffer from a performance loss. A botanical tree is not
well-suited for the OIT approach, because there may be many leaves that overlap at the same
screen position. Since the major parts of a leaf are opaque, we adapt an approximate way to
address translucency. This is done in two passes. In the first pass, only opaque parts of the
objects are rendered. During rendering, alpha blending is disabled and depth writing is enabled.
Then, in the second the pass, only non-opaque objects are rendered. This time, depth writing is
disabled and alpha-blending is enabled. The reason we do not write depths to the z-buffer is
that the completely transparent area should not affect the values in the z-buffer. Since there are
already colors in the background, the error caused by the rendering order becomes less obvious.
Especially when translucent areas are very small, we can hardly see any errors. This approach
guarantees that the color of the non-opaque area can be blended with the color of opaque area
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successfully. Still, it cannot guarantees that the color of a non-opaque area can be blended with
the color of other non-opaque areas correctly.

User interaction is an important part of our real-time simulation system. In our system, the
user can apply a force to the object with his/her mouse. The brute force method to finding
the vertex that the user wants to drag is to search all the triangles to find one that is closest to
the mouse cursor. However, this is slow and not suitable for real-time simulation if the mesh
contains a large number of vertices. By using core profile OpenGL, mouse vertex selection can
be implemented with a small amount of overhead. Our method benefits from the flexibility of
manipulating the color frame buffer in OpenGL. In OpenGL, we can simultaneously write to at
most eight color attachments for one framebuffer. The format of each color attachment is not
limited to 3/4 channels and one byte per channel [21]. To implement the mouse selection, we do
not render directly to the screen. Instead, we create a framebuffer with two color attachments to
store the intermediate results. For the first color attachment, we store the rendered scene colors.
For the second color attachment, we store the world space 3D positions of each fragment and
an index. The index gives the triangle that the fragment is in. When the user selects one pixel
on the screen, we can get the triangle index and pixel’s 3D position in world space by reading
pixel values from the second color attachment of the frame buffer. The second color attachment
is a byproduct of the object shading process, and does not cost many extra resources. Even
though we need to transfer the color attachment from the GPU back to the CPU in order to read
it in each time step, we only need to transfer a small part of it, containing the pixel we want.
After we have successfully read the pixel values from the frame buffer, we can directly find the
triangle that was selected. This completes the mouse selection.

In summary, the object shading process is illustrated in Figure 3.10. After shading, we
obtain a rendered scene color texture and an auxiliary texture for mouse selection. We use
another rendering pass to place the color texture on the screen. To do this, only one triangle
is drawn on the screen. The normalized device coordinates (NDC) of its vertices are (3,1,0),
(−1,−3,0) and (−1,1,0). The relationship between the triangle and the screen in the xy plane
is shown in Figure 3.11. We display the color by mapping the color texture to the triangle.

3.3.3 Mesh Assembly

Domains are independent of each other, because they always have different rendering prop-
erties. However, rendering them sequentially is not the best choice, as this would generate
too many draw calls in each timestep. To avoid this, we integrate the meshes of all do-
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mains into one giant mesh. As mentioned in the previous section, the faces of every domain
are unfolded to separate triangles, each containing tree vertices. These vertices are gath-
ered together when they are updated by the CUDA kernels. When rendering, the program
can directly use the vertex buffer generated by the GPU to draw all domains. However, a
problem that impedes rendering is that domains have different rendering properties, mak-
ing them hard to be “uniformized”. In our system, we pack all the rendering materials
of the different domains together. First of all, each triangle vertex is defined as follows:

s t r u c t v e r t e x
{

vec4 p o s i t i o n ;
vec4 normal ;
vec4 t a n g e n t ;
vec4 t r a n s f o r m e d t e x t u r e c o o r d i n a t e (TTC ) ;
vec4 m a t e r i a l c o o r d i n a t e (MC) ;

} ;
Here, ‘position’, ‘normal’ and ‘tangent’ in the data block are 4-element vectors that store
the world position, normal and tangent of the vertex, respectively. The ‘tangent’ is used for
computing the tangent space and ‘TTC’ represents the texture coordinate. For convenience, it is
also called the uv coordinate. The first two elements of ‘TCC’ store the original uv coordinates.
The last two elements store a scale vector, used by the fragment shader. It is used to scale the uv
coordinate to correctly sample the texture image. The last field ‘MC’ is the material coordinate.
It denotes whether the vertex needs texture mapping, the position in the texture that stores the
material information and the index of the texture that is sampled. Combined with ‘TTC’ and
‘MC’, we can compute the correct color of each vertex.

First, the textures used by all domains are packed into one texture array. In our system,
we assume that each domain can have at most one texture image. Additionally, to speed up
rendering, we assume that all domains share at most 512 separate texture images. Generally,
most mesh models do not have that many different texture images. Moreover, if there was a
mesh model that has lots of different texture images, they could be combined into one or several
larger texture images. The most common case is that a mesh has a lot of separate groups, but
only a few texture images. We use a texture array to pack those images together. When they are
packed together, it is necessary to “uniformize” them to the same resolution. The maximum
width and height among all the images is chosen as the final packed texture array’s width and
height. Denote width by wt and height by ht . For each 2D texture in the texture array, the
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sizes of them become the same. If an image is smaller than wt ×ht , there is a blank area in the
texture. We fill the blank area with the same image repeatedly, as illustrated in Figure 3.12.
Still, for any image i, a scale 2D factor si needs to transform the original texture coordinate uvi,
to accommodate the width and height of the texture array. Then the new uv coordinate uv′i is
computed as follows:

uv′i = (uvi −⌊uvi⌋)si

si =

(
wti −1
wt −1

,
hti −1
ht −1

)T

.
(3.13)

The equation first wraps the uv coordinate into [0,1). Then the wrapped uv coordinate is scaled
into the correct coordinate space. Accordingly, a 4-element vector needs to represent the uv
coordinate, which is the variable ‘TTC’. If there are n different images, the number of texture
array’s layers equals n. Additionally, another value is needed to denote the layer index of one
texture image. Eventually, each vertex needs five values to sample the texture color. The fifth
value, which is the layer index, is stored in the variable ‘MC’. If normal texture images exist,
they are packed in the same way.

Material properties of each domain are also packed. Typically, vertices in the same domain
have the same material properties. In the Phong lighting model, the properties of a material are
composed of ambient, diffuse, specular and shininess properties. Therefore, for a vertex, three
4-element vectors and one scalar are needed. Storing the material property for each vertex is
not practical, as this generates duplicated data and unnecessarily consumes GPU memory. It
also imposes extra burden on the vertex shader. To pack material properties of each domain
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compactly, we define a 2D texture image M that stores the material properties. Image M is a
K ×4 image where each pixel is represented by four floating-point numbers. Here, K is the
number of different materials. Each material property is stored in one column of the image,
as shown in Figure 3.13. Given the column index, the material property of a vertex can easily
be found in M . One element of the variable ‘MC’ stores the column index of the material
texture M. When a specific material is being fetched, the program does not use the default
texture sampling function. Instead, the program just considers the image as a 2D array and
directly loads data from M without any sampling or filtering. As texture mapping is one of the
bottlenecks of shader performance, this improve the rendering performance. The color of a
vertex may come from either sampling a texture image, or material diffuse color. We also need
a flag stex to determine whether a vertex needs texture mapping or not. The flag is also stored in
‘MC’. By using stex, the final diffuse color is computed by

Cd = stexMd +(1− stex)Td, (3.14)

where Cd is the final diffuse color, Md is the material diffuse color and Td is the texture sampling
color. Note that we don’t use an if statement when Cd is calculated, because the branch
statement is slower than basic arithmetic operations.



Chapter 4

Results

This thesis work was performed in the environment listed in 4.1. We elaborate the testing
environment in Tables 4.2 and 4.3. The experiments consist of two parts. The first part analyzes
the CUDA algorithms and the new system architecture. The second part gives the rendering
results.

Table 4.1 Our software environment.

Name Version
Operating system Ubuntu 12.04
Linux kernel 3.2.0-74
CUDA 6.5
OpenGL 4.2
g++ 4.6.3

Table 4.2 Graphics card configuration (NVIDIA® GeForce® GTX 680).

GPU Specifications
CUDA cores 1536
Base clock 1006 MHz
Boost clock 1058 MHz
Texture fill rate 128.8 billion/sec

Memory Specification
Memory speed 6.0 Gbps
Standard memory config 2048 MB
Memory interface width 256-bit GDDR5
Memory bandwidth 192.2 GB/sec
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Table 4.3 CPU and main memory configuration.

CPU Specifications
Number of CPUs 2
CPU model Intel® Xeon® E5-2690
Number of cores 8
Processor base frequency 2.9GHz
Max turbo frequency 3.8GHz
Max memory bandwidth 51.2 GB/s

Memory Specification
Memory size 32 GB
Memory speed 1333 MHz DDR3

4.1 CUDA Computation

4.1.1 Single Domain Uq Computation

Table 4.4 Statistics for the ratios of CPU to GPU running time for the single domain Uq
computation, under varying numbers of vertices (n) and modal dimensions (r).

❍❍❍
❍❍❍r

n
214 216 218 220 222

10 2.53 0.68 1.44 1.6 1.77
20 6.47 2.76 5.01 6.54 7.04
30 5.32 3.67 6.60 8.02 9.69

Because the floating-point multiplication and addition operations are not greatly affected by
the data specifics, we use randomly generated inputs to test the Uq computation algorithm for a
single domain. The CPU algorithm uses OpenMP, with 16 threads. The algorithm was tested by
50 random iterations and averages are reported (tsuq). The GPU running time (t ′suq) is measured
in the same way. The floating point values of Table 4.4 are calculated as tsuq/t ′suq. From the
table, we see that GPU has better performance in most cases. As the data size grows, GPU has
better performance than the CPU. This demonstrates that our CUDA algorithm is more efficient
than the traditional CPU algorithm.
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4.1.2 Multi-domain Simulation

To measure the performance of multi-domain Uq computation, we use 12 different botanical
species as the testing data, listed in Table 4.5. The implementation is based on an existing
multi-domain simulation system developed by Jernej Barbič and Yili Zhao [1, 27]. In this
previous system, the Uq computation and vertex updating are performed by the CPU. The
rendering system used the compatibility profile OpenGL [16]. On the other hand, our system
uses the core OpenGL profile and CUDA. The performance test is done by comparing our
system with the previous system.

First, we test the memory usage of the mesh assembly. As described in Chapter 3, this
will increase the memory usage. From Table 4.5, we can see that the number of vertices is
quite close to the number of faces. This means that even though we unfolded the mesh into
disconnected triangles, the memory usage does not increase significantly. Additionally, from the
statistics in Table 4.6, we can see that the maximum GPU memory usage (Quercus Garryana) is
much smaller than the total GPU memory size. Indeed, the GPU memory usage is related to the
number of domains, the number of faces and the number of vertices. The number of domains
determines how many transformation matrices there are. The number of faces determines the
vertex buffer size. The number of vertices determines the dimension of the displacement vector
u and the dimension of the U matrices.

Next, we test the our system performance. To measure the time accurately, we use a micro-
second level timer during the experiment. We use “occupation” to measure the importance of a
module in the simulation system. Occupation is defined as the time cost of a module divided by
the the total frame time. Computed from data in Table 4.7, the average occupation of the Uq
computation is 2.62% for the previous system, and 1.11% for our system. We conclude that the
Uq computation time is not significant.

In contrast, the average occupation of vertex updating and rendering is quite high in
the previous system, which is 77.0%, forming a bottleneck of the system. We therefore
focused on optimizing this part. In our system, however, the average occupation of vertex
updating and rendering is much smaller, i.e., 10.45%. The vertex updating and rendering
are therefore not bottlenecks anymore. Other part of the computation, such as solving the
model-reduced differential equation and the thread scheduling, become more critical for our
system’s performance.

Performance comparisons for each species are listed Table 4.7. For simple models our
system is not as fast as the previous system, even though the FPS is high enough for real-time
applications. The reason for this is that thread scheduling occurs more frequently, costing
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us plenty of time. Conversely, the previous system is sequential for rendering and physical
simulation. For complex models, our system is much faster (up to 5.33x).

For Uq computation, our system is 1.71x-10.45x faster than the previous system, as il-
lustrated in Table 4.7. This is a reasonable result, as the GeForce GTX 680 can compute
1536 floating-point operations per cycle. Additionally, for the vertex updating and rendering,
our system is 1.15x-47.58x faster. The CUDA algorithm significantly improves efficiency.
Moreover, Table 4.6 shows that the rendering time is always small, which is good for physical
based simulation.

Table 4.5 Botanical model specifications. The table gives the #vertices (v), #faces ( f ), #vertices
after unfolding (v′), #domains (d), #domains with r > 0 (d′), #modes (r) and total dimension of
u (u).

Species
Geometric Info Simulation Info

v f v′ d d′ r u
Pansy 7,987 15,372 46,476 22 22 324 106,882
Conifer 7,543 7,517 22,551 644 43 360 41,652
Weed willow 291,914 313,230 939,690 32,623 98 958 362,084
Peach tree 273,003 299,707 899,121 22,659 237 2,950 230,528
Broad-leaved tree 288,542 339,111 1,017,333 7,003 402 3,613 443,022
Fir 64,824 75,953 227,859 9,077 585 4,912 181,524
Western red cedar 40,480 55,810 167,430 4,408 800 5,987 205,112
Incense cedar 102,115 133,545 400,635 11,938 1,054 6,853 405,258
Quercus Garryana 586,668 224,926 674,778 120,871 871 9,520 1,000,860
Blue spruce 1,421,810 1,070,963 3,212,889 219,476 1,582 10,680 524,640
Three firs 194,472 227,859 683,577 27,232 1,755 14,736 544,572
Eastern hemlock 190,466 262,794 788,382 27,778 2,537 16,793 1,051,414

4.2 Rendering Effects

Figure 4.1 gives the final result of rendering a single tree (the FPS can be found in Table 4.7).
Figure 4.2 shows the rendering results of multiple trees. Figure 4.3 gives the comparison
between the tree trunk with bump mapping and without bump mapping. We can see the bump
feeling of the truck texture. Figure 4.4 shows the comparison between VSM and standard
shadow maps. The resolution of the depth map is 4096×4096. Compared to VSM, standard
shadow maps cause aliasing on the shadow outlines. If we decrease the resolution, the aliasing
problem is much more obvious, as illustrated in 4.5. Figure 4.6 shows the rendering with
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Table 4.6 Statistic for Uq computation time (tuq), vertex updating time (tvb), vertex updating
with rendering time (tvbr), frames per second (FPS), GPU memory usage (s) and #kernels of Uq
computation (nuqk).

Species CPU GPU
FPS tuq (ms) tvbr (ms) FPS tuq (ms) tvb (ms) tvbr (ms) s (MB) nuqk

Pansy 290 0.323 2.606 75 0.189 1.73 2.248 9.7 2
Conifer 60 0.261 5.886 55 0.165 1.059 1.693 5.8 1
Weed willow 3 8.066 261.926 16 1.12 5.766 6.483 129.8 2
Peach tree 5 1.978 150.619 10 0.713 6.949 9.692 119.6 2
Broad-leaved tree 10 3.341 80.008 25 0.391 6.417 7.01 150.9 2
Fir 10 1.949 63.729 28 0.329 1.776 2.335 35.5 2
Western red cedar 17 1.434 42.368 32 0.283 1.727 2.611 25.6 2
Incense cedar 7 3.299 120.238 20 0.476 4.132 4.817 59.7 1
Quercus Garryana 1 22.837 784.792 3 4.768 39.822 40.575 906.3 2
Blue spruce 1 12.152 1302.294 2 6.997 15.86 16.409 424.3 1
Three firs 3 3.268 261.394 15 0.714 4.978 5.494 103.6 2
Eastern hemlock 3 8.703 240.762 11 0.833 11.457 12.216 165.2 2

Table 4.7 Statistic for Uq computation time comparison (kuq = tuq/t ′uq), vertex updating and ren-
dering time comparison (kvbr = (tvbr)/

(
t ′vbr

)
), FPS comparison (k f ps = FPSGPU/FPSCPU ), Uq

computation time occupation (Ouq) and vertex buffer generation and rendering time occupation
(Ovbr). t ′ is the time cost using new method.

Species Comparison Ouq Ovbr
kuq kvbr k f ps CPU GPU CPU GPU

Pansy 1.71 1.16 0.26 9.37% 1.42% 75.57% 16.86%
Conifer 1.58 3.48 0.92 1.57% 0.91% 35.32% 9.31%
Weed willow 7.20 40.40 5.33 2.42% 1.79% 78.58% 10.37%
Peach tree 2.77 15.54 2.00 0.99% 0.71% 75.31% 9.69%
Broad-leaved tree 8.54 11.41 2.50 3.34% 0.98% 80.01% 17.52%
Fir 5.92 27.29 2.80 1.95% 0.92% 63.73% 6.54%
Western red cedar 5.07 16.23 1.88 2.44% 0.91% 72.03% 8.36%
Incense cedar 6.93 24.96 2.86 2.31% 0.95% 84.17% 9.63%
Quercus Garryana 4.79 19.34 3.00 2.28% 1.43% 78.48% 12.17%
Blue spruce 1.74 79.36 2.00 1.22% 1.40% 130.23% 3.28%
Three firs 4.58 47.58 5.00 0.98% 1.07% 78.42% 8.24%
Eastern hemlock 10.45 19.71 3.67 2.61% 0.92% 72.23% 13.44%
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Figure 4.1 Rendering results of a single tree. (Top left: Broad-leaves tree. Top Right: Peach
tree. Bottom left: Fir. Bottom right: Eastern hemlock)
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Figure 4.2 Rendering results of multiple trees. (Top: Four firs. Bottom: Three species and 20
trees)
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(a) Peach tree trunk with bump mapping (b) Peach tree truck without bump mapping

(c) Blue spruce trunk with bump mapping (d) Blue spruce truck without bump mapping

Figure 4.3 Bump mapping effect comparison.

(a) Standard shadow maps. (b) Variance shadow map.

Figure 4.4 Shadow maps comparison using a depth map with a resolution of 4096×4096.
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(a) Standard shadow maps. (b) Variance shadow map.

Figure 4.5 Shadow maps comparison using a depth map with a resolution of 512×512.

(a) Render with transparency. (b) Render without transparency.

Figure 4.6 Transparency rendering.
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transparency. The boundaries of leaves are mainly transparent which eliminates boundary
aliasing.



Chapter 5

Conclusion

The aim of this thesis – to improve performance of model reduction by using GPU – has been
achieved through the completion of the objectives in three key areas, namely:

(1) Development of a novel CUDA algorithm for Uq computation and vertex updating.
The algorithms for single domain Uq computation, multi-domain Uq computation and vertex
updating have been described. Experimental results show better performance compared to
pre-existing systems.

(2) Design of the new system architecture for CPU-GPU model reduction simulation. The
architecture utilizes GPUs and CPUs in parallel. The architecture accelerates performance and
improves GPU hardware utilization.

(3) Design of a new rendering system. The rendering system is developed by using the core
OpenGL profile. By using the combination of the existing rendering algorithms, the rendering
system improves the final effects as well as the performance.

This thesis has been successful in accelerating the system performance and improving the
rendering effects and has achieved good results on the available data sets. However, additional
work may be devoted to further improving the performance and rendering results. Therefore,
the main recommendations for further work include:

(1) Improvement of the performance of thread scheduling and synchronization. As shown in
the experimental results, the CUDA algorithms are fast while the FPS is still low. The problem
could be alleviated by analyzing the critical resources and the parallel structure of threads in
our system.

(2) Improvement of the rendering effects. The rendering system still has room for improve-
ment. As shown in the experimental results, rendering occupies a relatively small number of
GPU resources. Therefore, more rendering techniques could be added to our system. Since
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deferred rendering pipeline is already implemented in our system, the post-processing effects
such as fast approximate anti-aliasing and blooming could be added into the system in order to
enhance the rendering effects.

5 Conclusion
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